Устройство и принцип действия трансформатора его использование. Что такое трансформатор: устройство, принцип работы и назначение


Вопрос 1. Из чего состоит трансформатор?
Ответ. Простейший трансформатор состоит из замкнутого магнитопровода и двух обмоток в виде цилиндрических катушек.
Одна из обмоток подключается к источнику переменного синусоидального тока с напряжением u 1 и называется первичной обмоткой. К другой обмотке подключается нагрузка трансформатора. Эта обмотка называется вторичной
обмоткой.

Вопрос 2. Как осуществляется передача энергии из одной обмотки в другую?
Ответ. Передача энергии из одной обмотки в другую осуществляется путём электромагнитной индукции. Переменный синусоидальный ток i 1 , протекающий по первичной обмотке трансформатора, возбуждает в магнитопроводе переменный магнитный поток Ф с , который пронизывает витки обеих обмоток и наводит в них ЭДС
и
с амплитудами пропорциональными числам витков w 1 и w 2 . При подключении ко вторичной обмотке нагрузки в ней под действием ЭДС e 2 возникает переменный синусоидальный ток i 2 и устанавливается некоторое напряжение u 2 .
Электрическая связь между первичной и вторичной обмотками трансформатора отсутствует и энергия во вторичную обмотку передаётся посредством магнитного поля, возбуждаемого в сердечнике.

Вопрос 3. Чем является вторичная обмотка трансформатора по отношению к нагрузке?
Ответ. По отношению к нагрузке вторичная обмотка трансформатора является источником электрической энергии с ЭДС e 2 . Пренебрегая потерями в обмотках трансформатора можно считать, что напряжение питающей сети U 1 ≈ E 1 , а напряжение в нагрузке U 2 ≈ E 2 .

Вопрос 4. Что такое коэффициент трансформации?
Ответ. Так как ЭДС обмоток пропорциональны числам витков, то соотношение напряжений питания трансформатора и нагрузки также определяется соотношением чисел витков обмоток, т.е.
U 1 /U 2 ≈ E 1 /E 2 ≈ w 1 /w 2 = k .
Величина k называется коэффициентом трансформации.

Вопрос 5. Какой трансформатор называется понижающим?
Ответ. Если число витков вторичной обмотки меньше числа витков первичной w 2 < w 1 , то k > 1 и напряжение в нагрузке будет меньше напряжения на входе трансформатора. Такой трансформатор называется понижающим.

Вопрос 6. Какой трансформатор называется повышающим?
Ответ. Если число витков вторичной обмотки больше числа витков первичной w 2 > w 1 , то k < 1 и напряжение в нагрузке будет больше напряжения на входе трансформатора. Такой трансформатор называется повышающим.

Вопрос 7. Какая обмотка трансформатора называется обмоткой высшего напряжения (ВН)?
Ответ. Обмотка, подключаемая к сети с более высоким напряжением, называется обмоткой высшего напряжения (ВН). Вторая обмотка называется обмоткой низшего напряжения (НН).

Вопрос 8. Какие трансформаторы называются «сухими»?
Ответ. Трансформаторы, в которых отвод тепла производится потоком воздуха, называются «сухими» трансформаторами.

Вопрос 9. Какие трансформаторы называются «масляными»?
Ответ. В тех случаях, когда воздушным потоком невозможно отвести тепловую энергию так, чтобы обеспечить ограничение
температуры изоляции обмоток на допустимом уровне, для охлаждения используют жидкую среду, погружая трансформатор в бак со специальным трансформаторным маслом, которое одновременно выполняет роль хладоагента и электрической изоляции. Такие трансформаторы называются «масляными».

Вопрос 10. Как трансформаторы обозначают на электрических схемах?
Ответ.


На рисунке показаны условные обозначения однофазных двухобмоточных (1, 2, 3) и многообмоточных (7, 8) трансформаторов, а также трёхфазных трансформаторов (12, 13, 14, 15, 16). Здесь же показаны обозначения однофазных (4, 5) и трёхфазных (9, 10) автотрансформаторов и измерительных трансформаторов напряжения (6) и тока (11).

Вопрос 11. Чем определяются условия работы и свойства трансформатора?
Ответ. Условия работы и свойства трансформатора определяются системой параметров, называемых номинальными, т.е. значениями величин, соответствующих расчётному режиму работы трансформатора. Они указываются в справочных данных и на табличке, прикрепляемой к изделию.

Вопрос 12. Как влияет рабочая частота трансформатора на его массу и габариты?
Ответ. Повышение рабочей частоты трансформатора позволяет при прочих равных условиях существенно уменьшить массу и габариты изделия. Действительно, напряжение первичной обмотки примерно равно ЭДС, наводимой в ней магнитным потоком в сердечнике Φ c , а полная мощность, например, однофазного трансформатора равна

где и – заданные номинальные значения индукции в сердечнике и плотности тока в обмотке, а S c ∼ l 2 и S i – поперечное сечение сердечника и суммарное сечение w 1 витков обмотки. Следовательно, увеличение частоты питания f позволяет пропорционально уменьшить сечение сердечника при той же мощности трансформатора, т.е. уменьшить в квадрате его линейные размеры l .

Вопрос 13. Для чего служит магнитопровод трансформатора?
Ответ. Магнитопровод трансформатора служит для увеличения взаимной индукции обмоток и в общем случае не является необходимым элементом конструкции. При работе на высоких частотах, когда потери в ферромагнетике становятся недопустимо большими, а также при необходимости получения линейных характеристик, применяются трансформаторы без сердечника, т.н. воздушные трансформаторы. Однако в подавляющем большинстве случаев магнитопровод является одним из трёх основных элементов трансформатора. По конструкции магнитопроводы трансформаторов подразделяются на стрежневые и броневые.

Вопрос 14. Каким условиям должна удовлетворять конструкция обмоток трансформатора?
Ответ. Конструкция обмоток трансформаторов должна удовлетворять условиям высокой электрической и механической прочности, а также термостойкости.
Кроме того, технология их изготовления должна быть по возможности простой, а потери в обмотках минимальными.

Вопрос 15. Из чего изготавливаются обмотки трансформатора?
Ответ. Обмотки изготавливаются из медного или алюминиевого провода. Плотность тока в медных обмотках масляных трансформаторов находится в пределах 2…4,5 А/мм 2 , а в сухих трансформаторах 1,2…3,0 А/мм 2 . Верхние пределы относятся к более мощным трансформаторам. В алюминиевых обмотках плотность тока на 40…45% меньше. Провода обмоток могут быть круглого сечения площадью 0,02…10 мм 2 или прямоугольного сечения площадью 6…60 мм 2 . Во многих случаях катушки обмоток наматываются из нескольких параллельных проводников. Обмоточные провода покрыты эмалевой и хлопчатобумажной или шёлковой изоляцией. В сухих трансформаторах применяются провода с термостойкой изоляцией из стекловолокна.

Вопрос 16. Как подразделяются обмотки трансформатора по способу расположения на стержнях?
Ответ. По способу расположения на стержнях обмотки подразделяются на концентрические и чередующиеся. Концентрические обмотки выполняются в виде цилиндров, геометрические оси которых совпадают с осью стержней. Ближе к стержню обычно располагается обмотка низшего напряжения, т.к. это позволяет уменьшить изоляционный промежуток между обмоткой и стержнем. В чередующихся обмотках катушки ВН и НН поочерёдно располагают вдоль стрежня по высоте. Такая конструкция позволяет увеличить электромагнитную связь между обмотками, но значительно усложняет изоляцию и технологию изготовления обмоток, поэтому в силовых трансформаторах чередующиеся обмотки не используются.

Вопрос 17. Как выполняется изоляция обмоток трансформатора?
Ответ. Одним важнейших элементов конструкции обмоток трансформатора является изоляция.
Различают главную и продольную изоляцию.
Главной называется изоляция обмотки от стержня, бака и других обмоток. Её выполняют в виде изоляционных промежутков, электроизоляционных каркасов и шайб. При малых мощностях и низких напряжениях функцию главной изоляции выполняет каркас из пластика или электрокартона, на который наматываются обмотки, а также несколько слоёв лакоткани или картона, изолирующих одну обмотку от другой.
Продольной называется изоляция между различными точками одной обмотки, т.е. между витками, слоями и катушками. Межвитковая изоляция обеспечивается собственной изоляцией обмоточного провода. Для междуслойной изоляции используются несколько слоёв кабельной бумаги, а междукатушечная изоляция осуществляется либо изоляционными промежутками, либо каркасом или изоляционными шайбами.
Конструкция изоляции усложняется по мере роста напряжения обмотки ВН и у трансформаторов, работающих при напряжениях 200…500 кВ, стоимость изоляции достигает 25% стоимости трансформатора.

Литература: Усольцев Александр Анатольевич. Электрические машины. Учебное пособие. 2013 г.

Обновлено: Сентябрь 7, 2016 автором: admin

С изобретением трансформатора возник технический интерес к переменному току. Русский электротехник Михаил Осипович Доливо-Добровольский в 1889 г. предложил трёхфазную систему переменного тока с тремя проводами (трехфазная система переменного тока с шестью проводами изобретена Николой Тесла , патент США № 381968 от 01.05.1888, заявка на изобретение № 252132 от 12.10.1887), построил первый трёхфазный асинхронный двигатель с короткозамкнутой обмоткой типа «беличья клетка» и трехфазной обмоткой на роторе (трехфазный асинхронный двигатель изобретен Николой Тесла, патент США № 381968 от 01.05.1888, заявка на изобретение № 252132 от 12.10.1887), первый трёхфазный трансформатор с тремя стержнями магнитопровода, расположенными в одной плоскости. На электротехнической выставке во Франкфурте-на-Майне в 1891 г. Доливо-Добровольский демонстрировал опытную высоковольтную электропередачу трёхфазного тока протяжённостью 175 км. Трёхфазный генератор имел мощность 230 кВт при напряжении 95 В.

В начале 1900-х годов английский исследователь-металлург Роберт Хедфилд провёл серию экспериментов для установления влияния добавок на свойства железа. Лишь через несколько лет ему удалось поставить заказчикам первую тонну трансформаторной стали с добавками кремния.

Следующий крупный скачок в технологии производства сердечников был сделан в начале 30-х годов XX в, когда американский металлург Норман П. Гросс установил, что при комбинированном воздействии прокатки и нагревания у кремнистой стали появляются незаурядные магнитные свойства в направлении прокатки: магнитное насыщение увеличивалось на 50 %, потери на гистерезис сокращались в 4 раза, а магнитная проницаемость возрастала в 5 раз.

Базовые принципы действия трансформатора

Работа трансформатора основана на двух базовых принципах:

  1. Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм)
  2. Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)

На одну из обмоток, называемую первичной обмоткой , подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции , переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку.

В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать.

Закон Фарадея

ЭДС, создаваемая во вторичной обмотке, может быть вычислена по закону Фарадея, который гласит, что:

U 2 - Напряжение на вторичной обмотке, N 2 - число витков во вторичной обмотке, Φ - суммарный магнитный поток , через один виток обмотки. Если витки обмотки расположены перпендикулярно линиям магнитного поля, то поток будет пропорционален магнитному полю B и площади S через которую он проходит.

ЭДС, создаваемая в первичной обмотке, соответственно:

U 1 - мгновенное значение напряжения на концах первичной обмотки, N 1 - число витков в первичной обмотке.

Поделив уравнение U 2 на U 1 , получим отношение :

Уравнения идеального трансформатора

Идеальный трансформатор - трансформатор, у которого отсутствуют потери энергии на нагрев обмоток и потоки рассеяния обмоток . В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же ЭДС в каждом витке, суммарная ЭДС, индуцируемая в обмотке, пропорциональна полному числу её витков . Такой трансформатор всю поступающую энергию из первичной цепи трансформирует в магнитное поле и, затем, в энергию вторичной цепи. В этом случае поступающая энергия равна преобразованной энергии:

P 1 - мгновенное значение поступающей на трансформатор мощности, поступающей из первичной цепи, P 2 - мгновенное значение преобразованной трансформатором мощности, поступающей во вторичную цепь.

Соединив это уравнение с отношением напряжений на концах обмоток, получим уравнение идеального трансформатора:

Таким образом получаем, что при увеличении напряжения на концах вторичной обмотки U 2 , уменьшается ток вторичной цепи I 2 .

Для преобразования сопротивления одной цепи к сопротивлению другой, нужно умножить величину на квадрат отношения. Например, сопротивление Z 2 подключено к концам вторичной обмотки, его приведённое значение к первичной цепи будет . Данное правило справедливо также и для вторичной цепи: .

Режимы работы трансформатора

Режим короткого замыкания

В режиме короткого замыкания, на первичную обмотку трансформатора подается переменное напряжение небольшой величины, выводы вторичной обмотки соединяют накоротко. Величину напряжения на входе устанавливают такую, чтобы ток короткого замыкания равнялся номинальному (расчетному) току трансформатора. В таких условиях величина напряжения короткого замыкания характеризует потери в обмотках трансформатора, потери на омическом сопротивлении. Мощность потерь можно вычислить умножив напряжение короткого замыкания на ток короткого замыкания.

Данный режим широко используется в измерительных трансформаторах тока .

Режим с нагрузкой

При подключении нагрузки к вторичной обмотке во вторичной цепи возникает ток, создающий магнитный поток в магнитопроводе, направленный противоположно магнитному потоку, создаваемому первичной обмоткой. В результате в первичной цепи нарушается равенство ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке до тех пор, пока магнитный поток не достигнет практически прежнего значения.

Схематично, процесс преобразования можно изобразить следующим образом:

Для этого рассмотрим отклик системы на синусоидальный сигнал u 1 =U 1 e -jω t (ω=2π f, где f - частота сигнала, j - мнимая единица). Тогда i 1 =I 1 e -jω t и т. д., сокращая экспоненциальные множители получим

U 1 =-jωL 1 I 1 -jωL 12 I 2 +I 1 R 1

L 2 I 2 -jω L 12 I 1 +I 2 R 2 =-I 2 Z н

Метод комплексных амплитуд позволяет исследовать не только чисто активную, но и произвольную нагрузку, при этом достаточно заменить сопротивление нагрузки R н её импедансом Z н . Из полученных линейных уравнений можно легко выразить ток через нагрузку, воспользовавшись законом Ома - напряжение на нагрузке, и т. п.

Т-образная схема замещения трансформатора.

Часть магнитной системы трансформатора, не несущая основных обмоток и служащая для замыкания магнитной цепи , называется - ярмо

В зависимости от пространственного расположения стержней, выделяют:

  1. Плоская магнитная система - магнитная система, в которой продольные оси всех стержней и ярм расположены в одной плоскости
  2. Пространственная магнитная система - магнитная система, в которой продольные оси стержней или ярм, или стержней и ярм расположены в разных плоскостях
  3. Симметричная магнитная система - магнитная система, в которой все стержни имеют одинаковую форму, конструкцию и размеры, а взаимное расположение любого стержня по отношению ко всем ярмам одинаково для всех стержней
  4. Несимметричная магнитная система - магнитная система, в которой отдельные стержни могут отличаться от других стержней по форме, конструкции или размерам или взаимное расположение какого-либо стержня по отношению к другим стержням или ярмам может отличаться от расположения любого другого стержня

Обмотки

Основным элементом обмотки является виток - электрический проводник, или ряд параллельно соединённых таких проводников (многопроволочная жила), однократно обхватывающий часть магнитной системы трансформатора, электрический ток которого совместно с токами других таких проводников и других частей трансформатора создаёт магнитное поле трансформатора и в котором под действием этого магнитного поля наводится электродвижущая сила.

Обмотка - совокупность витков, образующих электрическую цепь, в которой суммируются ЭДС, наведённые в витках. В трёхфазном трансформаторе под обмоткой обычно подразумевают совокупность обмоток одного напряжения трёх фаз, соединяемых между собой.

Сечение проводника обмотки в силовых трансформаторах обычно имеет квадратную форму для наиболее эффективного использования имеющегося пространства (для увеличения коэффициента заполнения в окне сердечника). При увеличении площади сечения проводника он может быть разделён на два и более параллельных проводящих элементов с целью снижения потерь на вихревые токи в обмотке и облегчения функционирования обмотки. Проводящий элемент квадратной формы называется жилой.

Каждая жила изолируется при помощи либо бумажной обмотки, либо эмалевого лака. Две отдельно изолированных и параллельно соединённых жилы иногда могут иметь общую бумажную изоляцию. Две таких изолированных жилы в общей бумажной изоляции называются кабелем.

Особым видом проводника обмотки является непрерывно транспонированный кабель. Этот кабель состоит из жил, изолированных при помощи двух слоёв эмалевого лака, расположенных в осевом положении друг к другу, как показано на рисунке. Непрерывно транспонированный кабель получается путём перемещения внешней жилы одного слоя к следующему слою с постоянным шагом и применения общей внешней изоляции .

Бумажная обмотка кабеля выполнена из тонких (несколько десятков микрометров) бумажных полос шириной несколько сантиметров, намотанных вокруг жилы. Бумага заворачивается в несколько слоёв для получения требуемой общей толщины.

Дисковая обмотка

Обмотки разделяют по:

  1. Назначению
    • Основные - обмотки трансформатора, к которым подводится энергия преобразуемого или от которых отводится энергия преобразованного переменного тока.
    • Регулирующие - при невысоком токе обмотки и не слишком широком диапазоне регулирования, в обмотке могут быть предусмотрены отводы для регулирования коэффициента трансформации напряжения.
    • Вспомогательные - обмотки, предназначенные, например, для питания сети собственных нужд с мощностью существенно меньшей, чем номинальная мощность трансформатора, для компенсации третей гармонической магнитного поля, подмагничивания магнитной системы постоянным током, и т. п.
  2. Исполнению
    • Рядовая обмотка - витки обмотки располагаются в осевом направлении во всей длине обмотки. Последующие витки наматываются плотно друг к другу, не оставляя промежуточного пространства.
    • Винтовая обмотка - винтовая обмотка может представлять собой вариант многослойной обмотки с расстояниями между каждым витком или заходом обмотки.
    • Дисковая обмотка - дисковая обмотка состоит из ряда дисков, соединённых последовательно. В каждом диске витки наматываются в радиальном направлении в виде спирали по направлению внутрь и наружу на соседних дисках.
    • Фольговая обмотка - фольговые обмотки выполняются из широкого медного или алюминиевого листа толщиной от десятых долей миллиметра до нескольких миллиметров.

Схемы и группы соединения обмоток трёхфазных трансформаторов

Существуют три основных способа соединения фазовых обмоток каждой стороны трёхфазного трансформатора:

  • Y-соединение ("звезда"), где каждая обмотка соединена одним из концов с общей точкой, называемой нейтральной. Различают "звезду" с выводом от общей точки (обозначение Y 0 или Y n) и без него (Y)
  • Δ-соединение ("треугольник"), где три фазных обмотки соединены последовательно
  • Z-соединение ("зигзаг"). При данном способе соединения каждая фазная обмотка состоит из двух одинаковых частей, размещенных на разных стержнях магнитопровода и соединенных последовательно, встречно. Полученные три фазные обмотки соединяются в общей точке, аналогично "звезде". Обычно применяется "зигзаг" с отводом от общей точки (Z 0)

Как первичная, так и вторичная обмотки трансформатора могут быть соединены любым из трёх способов, показанным выше, в любых комбинациях. Конкретный способ и комбинация определяются назначением трансформатора.

Y-соединение обычно применяется для обмоток, работающих под высоким напряжением. Это объясняется многими причинами:

Обмотки трехфазного автотрансформатора могут быть соединены только "звездой";

Когда вместо одного сверхмощного трехфазного трансформатора применяют три однофазных автотрансформатора соединить их иным способом невозможно;

Когда вторичная обмотка трансформатора питает высоковольтную линию, наличие заземленной нейтрали снижает перенапряжения при ударе молний. Без заземления нейтрали невозможна работа дифференциальной защиты линии, в части утечки на землю. При этом первичные обмотки всех принимающих трансформаторов на этой линии не должны иметь заземленной нейтрали;

Существенно упрощается конструкция регуляторов напряжения (переключателей отпаек). Размещение отпаек обмотки с "нейтрального" конца обеспечивает минимальное количество групп контактов. Снижаются требования к изоляции переключателя, т.к. он работает при минимальном напряжении относительно Земли;

Это соединение наиболее технологично и наименее металлоемко.

Соединение в "треугольник" применяется в трансформаторах, где одна обмотка уже соединена "звездой", в особенности с выводом нейтрали.

Эксплуатация все еще широко распространенных трансформаторов со схемой Y/Y 0 оправдана, если нагрузка на его фазы одинаковая (трехфазный двигатель, трехфазная электропечь, строго рассчитанное уличное освещение и пр.) Если же нагрузка несимметричная (бытовая и прочая однофазная), то магнитный поток в сердечнике выходит из равновесия, а нескомпенсированный магнитный поток (так называемый "поток нулевой последовательности") замыкается через крышку и бак, вызывая их нагрев и вибрацию. Первичная обмотка не может этот поток скомпенсировать, т.к. её конец соединен с виртуальной нейтралью, не соединенной с генератором. Выходные напряжения будут искажены (возникнет "перекос фаз"). Для однофазной нагрузки такой трансформатор по сути является дросселем с разомкнутым сердечником, и полное его сопротивление велико. Ток однофазного короткого замыкания будет сильно занижен по сравнению с расчетным (для трехфазного к.з.), что делает ненадежной работу защитной аппаратуры.

Если же первичная обмотка соединена треугольником (трансформатор со схемой Δ/Y 0), то обмотки каждого стержня имеют два вывода как к нагрузке, так и к генератору, и первичная обмотка может подмагничивать каждый стержень в отдельности, не влияя на два других и не нарушая магнитное равновесие. Однофазное сопротивление такого трансформатора будет близко к расчетному, перекос напряжения практически устранен.

С другой стороны, у обмотки треугольником усложняется конструкция переключателя отпаек (контакты под высоким напряжением).

Соединение обмотки треугольником позволяет циркулировать третьей и кратным ей гармоникам тока внутри кольца, образованного тремя последовательно соединёнными обмотками. Замыкание токов третьей гармоники необходимо для снижения сопротивления трансформатора несинусоидальным токам нагрузки (нелинейная нагрузка)и поддержания его напряжения синусоидальным. Третья гармоника тока во всех трёх фазах имеет одинаковое направление, данные токи не могут циркулировать в обмотке, соединённой звездой с изолированной нейтралью.

Недостаток троичных синусоидальных токов в намагничивающем токе может привести к значительным искажениям наведённого напряжения, в случаях, если у сердечника 5 стержней, или он исполнен в броневом варианте. Соединённая треугольником обмотка трансформатора устранит данное нарушение, так как обмотка с соединением треугольником обеспечит затухание гармонических токов. Иногда в трансформаторах предусмотрено наличие третичной Δ-соединённой обмотки, предусмотренной не для зарядки, а для предотвращения искажения напряжения и понижения полного сопротивления нулевой последовательности. Такие обмотки называются компенсационными. Распределительные трансформаторы, предназначенные для зарядки, между фазой и нейтралью на стороне первого контура, снабжены обычно соединённой треугольником обмоткой. Однако ток в соединённой треугольником обмотке может быть очень слабым для достижения минимума номинальной мощности, а требуемый размер проводника обмотки чрезвычайно неудобен для заводского изготовления. В подобных случаях высоковольтная обмотка может быть соединена звездой, а вторичная обмотка - зигзагообразно. Токи нулевой последовательности, циркулирующие в двух отводах зигзагообразно соединённой обмотки будут балансировать друг друга, полное сопротивление нулевой последовательности вторичной стороны главным образом определяется полем рассеяния магнитного поля между двумя разветвлениями обмоток, и выражается весьма незначительной цифрой.

При использовании соединения пары обмоток различными способами возможно достигнуть различных степеней напряжения смещения между сторонами трансформатора.

  1. Параллельно могут работать только трансформаторы, имеющие одинаковую угловую погрешность между первичным и вторичным напряжениями.
  2. Полюса с одинаковой полярностью на сторонах высокого и низкого напряжения должны быть соединены параллельно.
  3. Трансформаторы должны иметь примерно тот же самый коэффициент передачи по напряжению.
  4. Напряжение полного сопротивления короткого замыкания должно быть одинаковым, в пределах ±10 %.
  5. Отношение мощностей трансформаторов не должно отклоняться более чем 1:3.
  6. Переключатели числа витков должны стоять в положениях, дающих коэффициент передачи по напряжению как можно ближе.

Другими словами, это значит, что следует использовать наиболее схожие трансформаторы. Одинаковые модели трансформаторов являются лучшим вариантом. Отклонение от вышеприведенных требований возможны при использовании соответствующих знаний.

Частота

Регулирование напряжения трансформатора

В зависимости от нагрузки электрической сети меняется её напряжение. Для нормальной работы электроприёмников потребителей необходимо, чтобы напряжение не отклонялось от заданного уровня больше допустимых пределов, в связи с чем применяются различные способы регулирования напряжения в сети.

Диагностика причин неисправности

Вид неисправности Причина
Перегрев Перегрузка
Перегрев Низкий уровень масла
Перегрев Замыкания
Перегрев Недостаточное охлаждение
Пробой Перегрузка
Пробой Загрязнение масла
Пробой Низкий уровень масла
Пробой Старение изоляции витков
Обрыв Плохое качество пайки
Обрыв Сильные электромеханические деформации при КЗ
Повышенное гудение Ослабление прессовки шихтованного магнитопровода
Повышенное гудение Перегрузка
Повышенное гудение
Повышенное гудение КЗ в обмотке
Появление воздуха в газовом реле (с термосифонным фильтром) Заглушен термосифонный фильтр, воздух появляется в газовом реле через заглушку

Перенапряжения трансформатора

Виды перенапряжений

В процессе использования трансформаторы могут подвергаться напряжению, превосходящему рабочие параметры. Данные перенапряжения классифицируются по их продолжительности на две группы:

  • Кратковременное перенапряжение - напряжение промышленной частоты относительной продолжительности, колеблющейся в пределах менее 1 секунды до нескольких часов.
  • Переходное перенапряжение - кратковременное перенапряжение в пределах от наносекунд до нескольких миллисекунд. Период нарастания может колебаться от нескольких наносекунд до нескольких миллисекунд. Переходное перенапряжение может быть колебательным и неколебательным. Они обычно имеют однонаправленное действие.

Трансформатор также может быть подвергнут комбинации кратковременных и переходных перенапряжений. Кратковременные перенапряжения могут следовать сразу за переходными перенапряжениями.

Перенапряжения классифицируются на две основные группы, характеризующих их происхождение:

  • Перенапряжения, вызванные атмосферными воздействиями . Чаще всего переходные перенапряжения возникают вследствие грозовых разрядов вблизи высоковольтных линий передач, подсоединенных к трансформатору, однако иногда грозовой импульс может поразить трансформатор или саму линию передачи. Пиковая величина напряжения зависит от тока грозового импульса, является статистической переменной. Зарегистрированы токи грозового импульса свыше 100 кА. В соответствии с измерениями, проведенными на высоковольтных линиях электропередач в 50 % случаях пиковая величина токов грозового импульса находится в пределах от 10 до 20 кА. Расстояние между трансформатором и точкой воздействия грозового импульса влияет на время нарастания импульса, поразившего трансформатор, чем короче расстояние до трансформатора, тем короче время.
  • Перенапряжения, сформированные внутри силовой системы . Данная группа охватывает как кратковременные так и переходные перенапряжения, возникшие вследствие изменения условий эксплуатации и обслуживания силовой системы. Данные изменения могут быть вызваны нарушением процесса коммутации или поломкой. Временные перенапряжения вызваны коротким замыканием на землю, сбросом нагрузки или феноменом низкочастотного резонанса. Переходные перенапряжения возникают в случаях, когда часто отключаются или подключаются к системе. Также они могут возникнуть при возгорании внешней изоляции. При переключении реактивной нагрузки, переходное напряжение может возрасти до 6-7 p.u. вследствие многочисленных прерываний тока переходного процесса в автоматическом прерывателе с временем нарастания импульса до нескольких долей микросекунд.

Способность трансформатора выдерживать перенапряжения

Трансформаторы должны пройти определённые испытания электрической прочности изоляции перед выпуском с завода. Прохождение данных испытаний свидетельствуют о вероятности бесперебойной эксплуатации трансформатора.

Испытания описаны в международных и национальных стандартах. Трансформаторы, прошедшие испытания, подтверждают высокую надёжность эксплуатации.

Дополнительным условием высокой степени надёжности является обеспечение приемлемых ограничений перенапряжения, так как трансформатор в процессе эксплуатации может быть подвергнут более серьёзным перенапряжениям по сравнению с условиями тестовых испытаний.

Необходимо подчеркнуть чрезвычайную важность планирования и учёта всех типов перенапряжений , которые могут возникнуть в силовой системе. Для нормального выполнения данного условия необходимо понимание происхождения различных типов перенапряжений. Величина различных типов перенапряжений является статистической переменной. Способность изоляции выдерживать перенапряжения также является статистической переменной.

См. также

  • Комплексный стенд проверки трансформаторов

Примечания

  1. Харламова Т. Е. История науки и техники. Электроэнергетика . Учебное пособие.-СПб: СЗТУ, 2006. 126 с.
  2. Кислицын А. Л. Трансформаторы: Учебное пособие по курсу «Электромеханика».- Ульяновск: УлГТУ, 2001. - 76 с ISBN 5-89146-202-8
  3. Силовые трансформаторы: основные вехи развития к.т. н. Савинцев Ю.М . Доступно на 25.01.2010
  4. Силовой трансформатор: этапы эволюции. Д.т. н., проф. Попов Г. В. на transform.ru . Доступно на 02.08.2008
  5. История трансформатора на energoportal.ru . Доступно на 02.08.2008
  6. Winders Power Transformer Principles and Applications. - P. 20–21.

Простейший представляет собой устройство, состоящее из стального сердечника и двух обмоток (рис. 1). При подаче в первичную обмотку переменного напряжения, во вторичной обмотке индуцируется ЭДС той же частоты. Если ко вторичной обмотке подключить некоторый электроприемник, то в ней возникает электрический ток и на вторичных зажимах трансформатора устанавливается напряжение, которое несколько меньше, чем ЭДС и в некоторой относительно малой степени зависит от нагрузки. Отношение первичного напряжения ко вторичному (коэффициент трансформации) приблизительно равно отношению чисел витков первичной и вторичной обмоток.

Рис. 1. Принцип устройства однофазного двухобмоточного трансформатора. 1 первичная обмотка, 2 вторичная обмотка, 3 сердечник. U1 первичное напряжение, U2 вторичное напряжение, I1 первичный ток, I2 вторичный ток, Ф магнитный поток

Простейшие условные обозначения трансформаторов изображены на рис. 2; для наглядности разные обмотки трансформатора можно, как и на рисунке, представить разными цветами.

Рис. 2. Условное обозначение трансформатора в подробных (многолинейных) схемах (a) и в схемах электрических сетей (b)

Трансформаторы могут быть одно- или многофазными, а вторичных обмоток может быть больше одной. В электрических сетях обычно используются трехфазные трансформаторы с одной или двумя вторичными обмотками. Если первичное и вторичное напряжения относительно близки друг другу, то могут использоваться и однообмоточные автотрансформаторы, принципиальные схемы которых представлены на рис. 3.

Рис. 3. Принципиальные схемы понижающего (a) и повышающего (b) автотрансформаторов

Важнейшими номинальными показателями трансформатора являются его номинальные первичное и вторичное напряжения, номинальные первичный и вторичный ток, а также номинальная вторичная полная мощность (номинальная мощность). Трансформаторы могут изготовляться как на весьма малую мощность (например, для микроэлектронных цепей), так и на очень большую (например, для мощных энергосистем), охватывая диапазон мощностей от 0,1 mVA до 1000 MVA.

Потери энергии в трансформаторе – обусловленные активным сопротивлением обмоток потери в меди и вызванные вихревыми токами и гистерезисом в сердечнике потери в стали – обычно настолько малы, что кпд трансформатора, как правило, выше 99 %. Несмотря на это, тепловыделение в мощных трансформаторах может оказаться настолько сильным, что необходимо прибегать к эффективным способам теплоотвода. Чаще всего активная часть трансформатора размещается в баке, заполненном минеральным (трасформаторным) маслом, который, при необходимости снабжается принудительным воздушным или водяным охлаждением. При мощности до 10 MVA (иногда и выше) могут применяться и сухие трансформаторы, обмотки которых обычно залиты с эпоксидной смолой. Основные преимущества сухих трансформаторов заключаются в более высокой огнебезопасности и в исключении течи трансформаторного масла, благодаря чему они могут без препятствий устанавливаться в любых частях зданий, в том числе на любом этаже. Для измерения переменных тока или напряжения (особенно в случае больших токов и высоких напряжений) часто используются измерительные трансформаторы.

Устройство трансформатора напряжения по своему принципу не отличается от силовых трансформаторов, но работает он в режиме, близком к холостому ходу; коэффициент трансформации в таком случае достаточно постоянен. Номинальное вторичное напряжение таких трансформаторов обычно равно 100 V. Вторичная обмотка трансформатора тока в идеальном случае короткозамкнута и вторичный ток в таком случае пропорционален первичному. Номинальный вторичный ток обычно составляет 5 A, но иногда может быть и меньше (например, 1 A). Примеры условных обозначений трансформаторов тока приведены на рис. 4.

Рис. 4. Условное обозначение трансформатора тока в развернутых схемах (a) и в однолинейных схемах (b)

Первым может считаться изготовленное Майклом Фарадеем (Michael Faraday) индукционное кольцо (англ. induction ring), состоящее из кольцевого стального сердечника и двух обмоток, при помощи которого он 29 августа 1831 года открыл явление электромагнитной индукции (рис. 5). Во время быстрого переходного процесса, возникающего при включении или отключении первичной обмотки, соединенной с источником постоянного тока, во вторичной обмотке индуцируется импульсная ЭДС. Такое устройство может поэтому называться импульсным или транзиентным трансформатором.

Рис. 5. Принцип устройства транзиентного трансформатора Майкла Фарадея. i1 первичный ток, i2 вторичный ток, t время

Исходя из открытия Фарадея, учитель физики колледжа города Маргнута (Margnooth) около Дублина (Dublin, Ирландия) Николас Келлан (Nicholas Callan, 1799–1864) построил в 1836 году индукционную катушку (искровой индуктор), состоящий из прерывателя и трансформатора; это устройство позволяло преобразовать постоянный ток в переменный ток высокого напряжения и вызывать длинные искровые разряды. Индукционные катушки стали быстро усовершенствоваться и в 19-м веке широко применялись при исследовании электрических разрядов. К ним могут быть отнесены и катушки зажигания современных автомобилей. Первый трансформатор переменного тока запатентовал в 1876 году живший в Париже русский электротехник Павел Яблочков, использовав его в цепях питания своих дуговых ламп. Сердечник трансформатора Яблочкова представлял собой прямой пучок стальных проволок, вследствие чего магнитная цепь была не замкнутой, как у Фарадея, а открытой, и в других установках такой трансформатор применять не стали. В 1885 году инженеры-электрики Будапештского завода Ганц и Компания (Ganz & Co.) Макс Дери (Max Deri, 172 1854–1938), Отто Титуш Блати (Otto Titus Blathy, 1860–1939) и Кароль Зиперновски (Karoly Zipernovsky, 1853–1942) изготовили трансформатор с тороидальным проволочным сердечником и заодно разработали систему распределения электроэнергии на переменном токе, основанную на применении этих трансформаторов. Трансформатор с еще лучшими свойствами, сердечник которого собирался из Е- и I-образных стальных листов, создал в том же году американский электротехник Уильям Стенли (William Stanley, 1858–1916), после чего началось быстрое развитие систем переменного тока как в Европе, так и в Америке. Первый трехфазный трансформатор построил в 1889 году Михаил Доливо-Добровольский.

Трансформатор - электрическое устройство, передающее энергию переменного тока от одного контура к другому способом электромагнитного взаимодействия. Большинство трансформаторов состоят из трёх частей: первичная обмотка, вторичная обмотка и сердечник. Трансформатор используется для того, чтобы преобразовывать переменный ток в электропитание для бытовых и промышленных приборов.

Принцип работы трансформатора

Трансформаторы работают по принципу электромагнитного взаимодействия. Чтобы электромагнитное взаимодействие происходило, необходимо присутствие магнитного поля и проводника, между которыми должно происходить относительное движение.

Когда на первичную обмотку трансформатора подаётся переменный ток, вокруг обмотки образуется магнитное поле. Поскольку подаётся переменный ток, меняющий направление каждую половину цикла, ежесекундно происходит многократное расширение и исчезновение магнитного поля. Вторичная обмотка как раз и является тем проводником, который нужен для электромагнитного взаимодействия, а расширение и исчезновение магнитного поля обеспечивает относительное движение. Итак, когда соблюдены все три требования, происходит электромагнитное взаимодействие. В результате, во вторичной обмотке трансформатора индуцируется напряжение.

Человеку, мало знакомому с электрикой сложно представить себе, что такое трансформатор, где он задействован, назначение элементов его конструкции.

Общая информация об устройстве

Трансформатором называется статическое электромагнитное устройство, предназначенное для преобразования тока переменной частоты с одним напряжением в переменный ток с иным напряжением, но с прежней частотой, основанный на явлении электромагнитной индукции.

Применяются приборы во всех сферах деятельности человека: электроэнергетике, радиотехнической, радиоэлектронной промышленности, бытовой сфере.

Конструкция

Устройство трансформатора предполагает наличие одной либо большего числа отдельных катушек (ленточных или проволочных), находящихся под единым магнитным потоком, накрученных на сердечник, изготовленный из ферромагнетика.

Важнейшие конструктивные части следующие:

  • обмотка;
  • каркас;
  • магнитопровод (сердечник);
  • охлаждающая система;
  • изоляционная система;
  • дополнительные части, необходимые в защитных целях, для установки, обеспечения подхода к выводящим частям.

В приборах чаще всего можно увидеть обмотку двух типов: первичную, получающую электроток от стороннего питающего источника, и вторичную, с которой напряжение снимается.

Сердечник обеспечивает улучшенный обратный контакт обмоток, обладает пониженным сопротивлением магнитному потоку.

Некоторые виды приборов, работающие на сверхвысокой и высокой частоте, производятся без сердечника.

Производство приборов налажено в трех базовых концепциях обмоток:

  • броневой;
  • тороидальной;
  • стержневой.

Устройство трансформаторов стержневых подразумевает накручивание обмотки на сердечник строго горизонтальное. В приборах броневого типа она заключена в магнитопроводе, размещается горизонтально либо вертикально.

Надежность, эксплуатационные особенности, устройство и принцип действия трансформатора принимаются без какого-либо влияния принципа его изготовления.

Принцип работы

Принцип работы трансформатора базируется на эффекте взаимоиндукции. Поступление тока переменной частоты от стороннего поставщика электроэнергии на вводы первичной обмотки формирует в сердечнике магнитное поле с переменным потоком, проходящего через вторичную обмотку и индуцирующее образование электродвижущей силы в ней. Закорачивание на приемнике электроэнергии вторичной обмотки обуславливает прохождение сквозь приемник электротока из-за влияния электродвижущей силы, вместе с тем в первичной обмотке образуется ток нагрузки.

Назначение трансформатора — перемещение преобразованной электрической энергии (без перемены ее частоты) к вторичной обмотке из первичной с подходящим для функционирования потребителей напряжением.

Классификация по видам

Силовые

Силовой трансформатор переменного электротока — это прибор, использующийся в целях трансформирования электроэнергии в подводящих сетях и электроустановках значительной мощности.

Необходимость в силовых установках объясняется серьезным различием рабочих напряжений магистральных линий электропередач и городских сетей, приходящих к конечным потребителям, требующимся для функционирования работающих от электроэнергии машин и механизмов.

Автотрансформаторы

Устройство и принцип работы трансформатора в таком исполнении подразумевает прямое сопряжение первичной и вторичной обмоток, благодаря этому одновременно обеспечивается их электромагнитный и электрический контакт. Обмотки устройств имеют не менее трех выводов, отличающихся своим напряжением.

Основным достоинством этих приборов следует назвать хороший КПД, потому как преобразуется далеко не вся мощность — это значимо для малых расхождениях напряжений ввода и вывода. Минус — неизолированность цепей трансформатора (отсутсвтие разделения) между собой.

Трансформаторы тока

Данным термином принято обозначать прибор, запитанный непосредственно от поставщика электроэнергии, применяющийся в целях понижения первичного электротока до подходящих значений для использующихся в измеряющих и защитных цепях, сигнализации, связи.

Первичная обмотка трансформаторов электротока, устройство которых предусматривает отсутствие гальванических связей, подключается к цепи с подлежащим определению переменным электротоком, а электроизмерительные средства подсоединяются к вторичной обмотке. Текущий по ней электроток примерно соответствует току первичной обмотки, поделенному на коэффициент трансформирования.

Трансформаторы напряжения

Назначение этих приборов — снижение напряжения в измеряющих цепях, автоматики и релейной защиты. Такие защитные и электроизмерительные цепи в устройствах различного назначения отделены от цепей высокого напряжения.

Импульсные

Данные виды трансформаторов необходимы для изменения коротких по времени видеоимпульсов, как правило, имеющих повторение в определенном периоде со значительной скважностью, с приведенным к минимуму изменением их формы. Цель использования — перенос ортогонального электроимпульса с наиболее крутым срезом и фронтом, неизменным показателем амплитуды.

Главным требованием, предъявляющимся к приборам данного типа, является отсутствие искажений при переносе формы преобразованных импульсов напряжения. Действие на вход напряжения какой-либо формы обуславливает получение на выходе импульса напряжения идентичной формы, но, вероятно, с другим диапазоном либо измененной полярностью.

Разделительные

Что такое трансформатор разделительный становится понятно исходя из самого определения — это прибор с первичной обмоткой, не связанной электрически (т.е. разделенной) с вторичными.

Существует два типа таких устройств:

  • силовые;
  • сигнальные.

Силовые применяются с целью улучшения надежности электросетей при непредвиденном синхронном соединении с землей и токоведущими частями, либо элементами нетоковедущими, оказавшимися из-за нарушения изоляции под напряжением.

Сигнальные применяются в целях обеспечения гальванической развязки электроцепей.

Согласующие

Как работает трансформатор данного вида также понятно из его названия. Согласующими называются приборы, применяющиеся с целью согласования между собой сопротивления отдельных элементов электросхем с приведенным к минимуму изменением формы сигнала. Также устройства такого типа используются для исключения гальванических взаимодействий между отдельными частями схем.

Пик-трансформаторы

Принцип действия пик-трансформаторов базируется на преобразование характера напряжения, от входного синусоидального в импульсное. Полярность после перехода изменяется по прошествии половины периода.

Сдвоенный дроссель

Его азначение, устройство и принцип действия, как трансформатора, абсолютно идентичны приборам с парой подобных обмоток, которые, в данном случае, абсолютно одинаковы, намотанны встречно или согласованно.

Также часто можно встретить такое наименование данного устройства, как встречный индуктивный фильтр. Это говорит о сфере применения прибора – входная фильтрация напряжения в блоках питания, звуковой технике, цифровых приборах.

Режимы работы

Холостой ход (ХХ)

Такой порядок работы реализуется от размыкания вторичной сети, после чего в ней прекращается течение электротока. В первичной обмотке течет ток холостого хода, составной его элемент — ток намагничивающий.

Когда вторичный ток равен нулю, электродвижущая сила индукции в первичной обмотке целиком возмещает напряжение питающего источника, а потому при пропаже нагрузочных токов, идущий сквозь первичную обмотку ток по своему значению соответствует току намагничивающему.

Функциональное назначение работы трансформаторов вхолостую — определение их важнейших параметров:

  • показателя трансформирования;
  • потерь в магнитопроводе.

Режим нагрузки

Режим характеризуется функционированием устройства при подаче напряжения на вводы первичной цепи и подключении нагрузки во вторичной. Нагружающий ток идет по «вторичке», а в первичной — суммарный ток нагрузки и ток холостой работы. Этот режим функционирования считается для прибора преобладающим.

На вопрос, как работает трансформатор в основном режиме, отвечает основной закон ЭДС индукции. Принцип таков: подача нагрузки к вторичной обмотке вызывает образование во вторичной цепи магнитного потока, образующего в сердечнике нагружающий электроток. Направлен он в сторону, противоположную его течению, создающегося первичной обмоткой. В первичной цепи паритет электродвижущих сил поставщика электроэнергии и индукции не соблюдается, в первичной обмотке осуществляется повышение электротока до того времени, пока магнитный поток не вернется к своему исходному значению.

Короткое замыкание (КЗ)

Переход прибора в этот режим осуществляется при кратковременном замыкании вторичной цепи. Короткое замыкание — особый тип нагрузки, прилагаемая нагрузка — сопротивление вторичной обмотки — единственная.

Принцип работы трансформатора в режиме КЗ таков: к первичной обмотке приходит незначительное переменное напряжение, выводы вторичной соединяются накоротко. Напряжение на входе устанавливается с таким расчетом, чтобы величина замыкающего тока соответствовала величине номинального электротока устройства. Величина напряжения определяет энергопотери, приходящиеся на разогрев обмоток, а также на активное сопротивление.

Такой режим характерен для приборов измерительного типа.

Исходя из многообразия устройств и видов назначения трансформаторов, можно с уверенностью сказать, что на сегодня они — незаменимые, использующиеся практически повсеместно устройства, благодаря которым обеспечивается стабильность и достижение необходимых потребителю значений напряжения, как гражданских сетей, так и сетей предприятий промышленности.







2024 © fealta.ru.