Протекает пробковый кран. Газовый вентиль в квартире: какой выбрать и как поменять


ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАФЕДРА ГОРНЫХ И НЕФТЕПРОМЫСЛОВЫХ МАШИН

Курсовая работа

Эксплуатация и ремонт пробкового крана

Выполнил: ст.гр. МОН-06:

Файрушин С.Р.

Проверил преподаватель:

Кошкин А.П

Пермь, 2010


ВВЕДЕНИЕ

1. ВИДЫ ЗАПОРНЫХ УСТРОЙСТВ

2. ВЫБОР ЗАПОРНОГО УСТРОЙСТВА

2.1 Классификация кранов

2.2 Пробковый кран

3. ЭКСПЛУАТАЦИЯ И СМАЗКА

4. НЕИСПРАВНОСТИ И ИХ УСТРАНЕНИЕ

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

В общем случае основное назначение запорной арматуры - перекрывать поток рабочей среды по трубопроводу и снова пускать среду в зависимости от требований технологического процесса, обслуживаемого данным трубопроводом. Кроме того, запорную арматуру применяют: 1) для переключения потока или его части из одной ветви системы в другую и 2) для дросселирования потока среды, т. е. изменения его расхода, давления и скорости (применение нежелательно, так как в условиях дросселирования запорная арматура быстрее изнашивается из-за эрозии, вибрации и других причин).

Тип и назначение трубопровода, вид запорной арматуры и место ее установки в гидравлической системе определяют конкретные особенности эксплуатации арматуры, а также характер требований, предъявляемых к ней. Так, запорные устройства фонтанной арматуры подавляющую часть времени своего функционирования находится в открытом положении, при этом через нее идет поток жидкости либо газа. Такая арматура закрывается например, для проведения ремонтных работ, врезки отвода и при аварии (разрыве трубы). При этом, естественно, арматура должна обеспечивать полную герметичность. Чтобы потери при аварии были минимальны, арматуру необходимо закрыть сразу же. Привод запорной арматуры должен быть взрывобезопасным. Поскольку скважины часто находятся в малообжитых и труднодоступных районах (пустыни, тундра, тайга), обслуживание запорной арматуры затруднительно.

Основные требования к запорным устройствам следующие. Поскольку такая арматура почти постоянно открыта, она должна иметь минимальное гидравлическое сопротивление, чтобы не снижать существенно пропускную способность линии. Такая арматура должна иметь высокую надежность, определяемую не большим числом циклов срабатывания (что в данном случае и не надо), а легкостью закрытия после длительной эксплуатации в открытом положении, либо наоборот. Для герметичного закрывания арматуры необходимо, чтобы уплотнение было высокостойким к длительному эрозионному воздействию потока добываемой жидкости, который может содержать абразивные частицы. Арматура должна быть долговечной (примерно 10-20 лет), так как операция по ее замене обходится значительно дороже самой арматуры из-за необходимости остановки работы скважины в целом, сложности доставки арматуры на место и т. п. Высокая надежность запорных устройств фонтанной арматуры при минимальном обслуживании - довольно жесткое условие при конструировании.


1. ВИДЫ ЗАПОРНЫХ УСТРОЙСТВ

Основных, наиболее часто применяемых типов запорной арматуры, четыре. Их различают по характеру перемещения запорного элемента при срабатывании арматуры и по форме этого элемента.

Принципиальная особенность задвижек заключается в том, что при их закрывании запорный элемент не преодолевает усилия от давления среды, так как он движется поперек потока. В задвижках при закрывании необходимо преодолеть только трение. Поэтому их можно применять для больших проходов и рабочих давлений. Площадь уплотнительных поверхностей задвижек невелика - два узких кольца вокруг прохода. Благодаря этому они надежны и герметичны. Основное преимущество задвижек - их прямоточность и низкое местное гидравлическое сопротивление. Последнее может быть практически сведено к сопротивлению трения о стенки трубы равной длины в задвижках с направляющей трубой, где в открытом положении для потока создается канал, совпадающий по сечению с трубопроводом.

Основное преимущество вентилей - отсутствие трения уплотнительных поверхностей. При этом значительно уменьшается опасность повреждения (путем схватывания и задирания однородных металлических поверхностей, царапания посторонними частицами) уплотнения, что позволяет использовать более высокие контактные давления. Поэтому вентили применяют в самых ответственных трубопроводах высокого давления. По сравнению с задвижками высота вентилей обычно несколько меньше, зато строительная длина их значительно больше. Это объясняется необходимостью разместить более или менее плавное колено с седлом. С другой стороны, в угловой арматуре (где запорное устройство совмещается с изгибом трубопровода) это колено получается совершенно естественно, так что вентили - практически наиболее удобный и эффективный вид угловой арматуры. Недостаток вентилей заключается в необходимости при закрывании (или при открывании - с подачей среды на золотник) преодолевать давление среды. Это дополнительно нагружает шпиндель и привод вентиля и увеличивает усилие на маховике. В вентилях с подачей среды на золотник при повышенных давлениях или больших проходах применяют разгрузочные устройства (золотники меньшего диаметра, открывающиеся до открывания главного золотника). При подаче среды на золотник вентиля сальник постоянно находится под давлением среды, что снижает его надежность. В связи с этим вентили среднего и высокого давления применяют при проходах не выше 400 мм, причем наиболее применимы вентили с условным проходом до 150 мм включительно.

Преимуществом вентилей является малый рабочий ход их запорного элемента (обычно в четыре раза меньший по сравнению с задвижками), а следовательно, и меньшие высота вентилей и время срабатывания, чем у задвижек. Вентили имеют то преимущество перед задвижками, что в них уплотнение золотника легко может быть выполнено из резины или пластмассы, при этом усилие, требуемое для герметизации, значительно снижается и повышается коррозионная стойкость уплотнения.

Серьезным недостатком большинства конструкций вентилей (кроме прямоточных) является их наиболее высокое, по сравнению с другими типами запорной арматуры, гидравлическое сопротивление. Прямоточные вентили имеют более низкое гидравлическое сопротивление, однако они несколько дороже вследствие сложного изготовления.

Диафрагмовые вентили имеют такие же ограничения по величине прохода что и обычные; кроме того, их можно применять только для низких давлений (до 10 кгс/см 2), что связано с малой прочностью упругого запорного элемента диафрагмы, выполняемой из материалов большой гибкости (резины, пластмассы). Диафрагмовые вентили особенно хорошо приспособлены для работы на агрессивных средах, так как они не имеют сальника, а подвижные металлические элементы отделены от рабочей среды диафрагмой.

Корпусы диафрагмовых вентилей обычно изнутри футеруются резиной или пластмассой, что повышает их коррозионную стойкость. Диафрагмовые вентили обеспечивают хорошую герметичность, даже на средах с посторонними включениями, так как последние вдавливаются в мягкое уплотнение.

Некоторую аналогию с диафрагмовыми вентилями представляют шланговые затворы. Их основная часть - резиновый или резинотканевый шланг, пережимаемый специальными траверсами от механического или ручного привода, либо давлением жидкости. Основные преимущества шланговых затворов - простота конструкции, эффективность работы на шламах и пульпах (где арматура большинства других типов не работоспособна), стойкость к коррозии и особенно к абразивному износу. При эксплуатации в среде с абразивными частицами шланговые затворы почти незаменимы, потому что, кроме высокой абразивной стойкости и надежности герметизации резинового корпуса, они прямоточны. Это обстоятельство выгодно отличает шланговые затворы от диафрагмовых вентилей, так как при поворотах потока с абразивными частицами они ударяются о стенку, которая быстро изнашивается.

Однако шланговые затворы имеют ограниченную долговечность, связанную со старением резины. Вследствие низкой прочности резины шланговые затворы можно применять только при низких давлениях (практически до 6 кгс/см 2). Шланговые затворы не рекомендуется использовать при вакууме, так как под действием внешнего давления шланг может терять устойчивость и самопроизвольно перекрывать проход.

Важное преимущество кранов как вида запорной арматуры - уплотнительные поверхности во время работы остаются в контакте друг с другом и защищены от рабочей среды. Это практически устраняет опасность попадания и защемления посторонних частиц между уплотнительными поверхностями, уменьшает коррозию и эрозию уплотнений, делает возможным применять смазку последних. Использование смазки в затворе повышает герметичность надежность и долговечность работы затвора, а также снижает усилия для управления.

Другим преимуществом кранов является их самоторможение (кран не может открыться в результате давления среды). Это позволяет не применять самотормозящиеся винтовые передачи в приводе, что упрощает конструкцию, повышает к. п. д. привода и обеспечивает быстрое срабатывание (необходимо повернуть маховик или выходной вал при механическом приводе только на четверть оборота). Существенное преимущество кранов заключается в их низком гидравлическом сопротивлении и отсутствии застойных зон в корпусе вследствие прямоточности проходного канала, а также в возможности сосредоточить в одном запорном устройстве управление несколькими разветвляющимися потоками: трех- и четырехходовые краны часто применяются в технологической обвязке самых различных объектов.

К недостаткам кранов относится прежде всего их менее надежная герметичность (в основном у конических кранов с уплотнением «металл по металлу»).

Как устроен конусный (пробковый) кран? Где используются эти изделия? Для чего, например, употребляется пробковый кран 11Б6БК ДУ50? Как хороши эти элементы запорной арматуры в системах водоснабжения и отопления на фоне альтернатив? Попытаемся ответить на эти вопросы.

Что это такое

Принципиальная схема и используемые материалы

Так именуется закрывающее либо регулирующее приспособление, главный элемент которого - пробка - имеет форму полного либо усеченного конуса со сквозным каналом и соприкасается с корпусом всеми боковыми поверхностями. Непроницаемость для воды, воздуха, газа либо другой транспортируемой трубопроводом среды обеспечивается отсутствием зазора между стенками корпуса и пробкой.

Устройство пробкового крана подразумевает большую площадь трения и, как следствие, большое упрочнение, требующееся для поворота. Разумеется, что при громадном диаметре трубопровода оно станет неприемлемо громадным; кроме того: прикипание поверхностей дополнительно увеличит сопротивление.

Как раз исходя из этого для изготовления пробковых кранов традиционно используются коррозионностойкие материалы с низким коэффициентом трения - латунь и чугун.

Обратите внимание: из-за изюминок конструкции и низкой механической прочности используемых металлов диаметр пробковых кранов редко превышает 100 мм, а рабочее давление - 16 атмосфер.


Нет правил без исключений: при жажде в продаже возможно найти пробковый проходной кран диаметром до 200 миллиметров в металлическом корпусе.

Но к тем вентилям, каковые возможно встретить в подвалах, он имеет мало отношения:

  • Для облегчения вращения пробки употребляется редуктор с штурвалом.
  • Пробка выполняется все-таки из чугуна: в случае если прикипят друг к другу два металлических элемента, сорвать их не окажет помощь кроме того редуктор.

Герметизация корпуса

Как кран перекрывает перемещение воды либо газа в трубопроводе - осознать несложно. А как именно обеспечивается отсутствие утечек во окружающую среду?

Натяжение

Пробка проходит через корпус вентиля полностью. Ее хвостовик с нарезанной резьбой при затягивании навернутой на него гайки прижимает пробку к корпусу со большим упрочнением. Отсутствие зазора гарантирует отсутствие протечек как через вентиль по трубопроводу, так и во окружающую среду.

Любопытно: при работе вентиля уровень качества притирки поверхностей со временем улучшается.

Пружина

Газовый пробковый конусный кран, который возможно видеть на подводке к газовой плите в большинстве русских квартир, устроен пара в противном случае: пробка прижимается к корпусу не гайкой, а пружиной. Маленькое упрочнение прижима вкупе со смазкой снабжает умеренное упрочнение поворота пробки; но большое рабочее давление конструкции более чем мало.

Сальник

Наконец, на водоснабжении и отоплении массово использовался пробко-сальниковый кран: сальниковая набивка около штока снабжала отсутствие утечек. В большинстве случаев, употреблялся плетеный графитовый сальник.

То, как зажималась набивка, в большинстве случаев зависело от материала вентиля:

  • Латунные изделия применяли обжим накидной гайкой.
  • Пробковый чугунный кран чаще применял для обжимки сальника несколько болтов, притягивавших сальницу к ушкам корпуса.

Методы соединения корпуса с трубопроводом

Их, фактически, всего два:

  • Фланцевое . Смежные фланцы притягиваются друг к другу четырьмя - восемью болтами; герметичность обеспечивается паронитовой либо резиновой прокладкой.
  • Резьбовое, либо муфтовое . Для герметизации употребляется сантехнический лен и неестественные герметизирующие материалы.

В зависимости от номинального диаметра присоединяемого трубопровода указывается ДУ (условный проход) вентиля. Отечественная документация применяет метрическую систему; ДУ приблизительно соответствует внутреннему диаметру трубопроводу в миллиметрах. Импортные товары чаще маркируются в дюймах:

ДУ Размер в дюймах
15 1/2
20 3/4
25 1
32 1 1/4
40 1 1/2
50 2

Использование

Приведем пара примеров применения пробковых кранов в разных их выполнениях.

  • Самый наглядный пример - самоварный краник. Пробка в нем удерживается в корпусе крана лишь собственной тяжестью.
  • Смесители советского примера с рычажным переключателем были не весьма эргономичны в применении и довольно часто текли; но они были фактически неубиваемыми. Сломать рычаг либо пробку было непростой задачей.
  • Трехходовые пробковые краны употреблялись для регулировки температуры в квартирах: в зависимости от положения они пускали поток теплоносителя через батарею, через перемычку или полностью перекрывали его.

Кстати: последняя функция крана была обстоятельством лютой неприязни слесарей, обслуживавших районы, застроенные хрущевками. Узнать, кто из жильцов по стояку перекрыл кран, получалось далеко не сходу.

  • Газовые краны советского примера нами уже упоминались. Пробковый вентиль на фоне распространенных тогда винтовых вправду смотрелся куда более надежным и обеспечивающим отсутствие утечек.
  • Наконец, наровне с винтовым вентилем пробковый сальниковый кран был наиболее распространенным элементом запорной водоснабжения систем и арматуры отопления в 60 - 80 годы прошлого века. Именно там, например, массово употреблялся упомянутый в начале нашего материала вентиль 11Б6БК ДУ50: он монтировался на врезках ГВС и отопления в элеваторных узлах.

Преимущества и недочёты

Как выглядят пробковые краны на фоне альтернатив применительно к сантехнике?

Начнем с похвал в их адрес.

Плюсы

  • В отличие от винтовых вентилей, их не требуется в некотором роде ориентировать по направлению тока воды. Отрыв клапана не угрожает легко ввиду отсутствия такового.
  • Прямой и широкий сквозной канал в пробке формирует достаточно умеренное гидравлическое сопротивление - опять-таки в отличие от извилистых ходов в винтовом вентиле.
  • По той же причине пробковые вентиля ни при каких обстоятельствах не забиваются окалиной, ржавчиной и песком. Мусору просто-напросто негде задержаться в них.
  • От современных шаровых вентилей пробковые выгодно отличаются большей стойкостью к большим температурам.

Но: 150 С, большие для шарового вентиля, являются пределом температуры на подающей нитке теплотрассы в пик зимних холодов. Более высокие значения достижимы только в системах парового отопления, каковые на данный момент употребляются только на немногочисленных промышленных фирмах.


Минусы

  • И чугунные, и латунные вентиля при долгом бездействии закипают. Дабы провернуть их по окончании пяти лет простоя, требуется упрочнение, в полной мере талантливое порвать резьбу на сгоне.
  • По окончании пресловутого периода бездействия мельчайший поворот вентиля ведет к утечке воды через сальник. Да, это неприятность - неспециализированная для всех изделий с сальниковой набивкой; но при винтового вентиля она решается его полным открытием. Тут же приходится набивать сальник заново.
  • Кстати, о сальнике: набить его возможно, лишь предварительно перекрыв и скинув воду. С чем связана инструкция? В случае если вскрыть вентиль под давлением, потревоженная пробка вполне возможно полетит вам в лицо на фронте потока воды. В лучшем случае - холодной, в нехорошем - обжигающе горячей.

Для сравнения: задвижку с притертыми щечками для набивки сальника своими руками достаточно.

  • Бессальниковые (натяжные) вентиля приходится ослаблять перед открытием либо закрытием, что сопровождается утечкой воды. Особенно трогательно, в то время, когда вы находитесь под вентилем. В случае если же не ослаблять натяжную гайку, имеется настоящие шансы оторвать резьбу от пробки.
  • Шток для поворота приходится брать разводным, рожковым либо (значительно чаще) газовым ключом. Как следствие, довольно часто применяемые краны легко определить по скругленным, а то и фактически отсутствующим выше сальницы штокам.
  • При всем том цена пробкового вентиля не ниже, а обычно - выше шарового аналога того же размера.

Заключение

Выводы достаточно неутешительны. Морально устаревшая конструкция уже проиграла битву за рынок сантехнических коммуникаций и может употребляться разве что в узкоспециализированных промышленных трубопроводах.

В зданиях, где под радиатором стоит трехходовой пробковый кран, возможно только порекомендовать как возможно скорее выполнить замену подводок.


Как неизменно, в видео в данной статье читатель сможет отыскать дополнительную тематическую данные. Удач!

Если ранее для перекрытия потока среды в трубопроводах в основном использовались пробковые краны, то в настоящее время этот сектор рынка на 90% заполнен .

На самом деле пробковый кран был изобретен еще в древности и благополучно «дожил» до наших дней.

Что явилось причиной того, что он спрос на него упал? Причина в том, что за годы и столетия эксплуатации выявились все его слабые стороны.

  • повышенный крутящий момент;
  • высокие гидравлические потери.

Но современные производители, используя достижения современных технологий, активно адаптируют свои изделия к нуждам потребителей. Поэтому в ближайшее время стоит ожидать увеличения доли пробковых кранов на рынке .

Особенностью этого типа кранов является форма запирающего элемента – пробки. Она может быть изготовлена в форме цилиндра или усеченного конуса. Последнее исполнение встречается гораздо чаще, поэтому пробковые краны нередко называют «конусными». В теле пробки имеется отверстие для пропуска рабочей среды трубопровода.

Конструкция пробкового крана достаточно проста.

Он состоит из следующих деталей:

  • корпус ;
  • пробковый затвор;
  • уплотняющий прижим;
  • рукоять управления.

Самой важной конструктивной частью крана является пробка, которая должна быть идеально притерта к поверхности седла. Это является основным условием герметичности затвора.

Выполнение этого узла значительно повышает трудоемкость при изготовлении крана.

Принцип действия пробкового крана прост: при повороте на 90 градусов рукояти управления, связанной с пробковым затвором, он также поворачивается. При этом отверстие в пробке меняет положение в корпусе, и происходит открывание — закрывание потока рабочей среды.

Пробковый кран обеспечивает выполнение двух, казалось бы, несовместимых требований: с одной стороны, он должен плавно поворачиваться (без заклинивания и нарушения уплотнительных поверхностей), а с другой – обеспечивать плотное и герметичное прилегание поверхностей пробки и седла.

Краны изготавливают из самых различных материалов: , бронзы, нержавеющей и углеродистой стали, чугуна, сложных сплавов и даже полимеров.

Краны можно разделить по нескольким различным признакам:

  • По типу затвора – конусные и цилиндровые.
  • По методу герметизации от внешней среды – натяжные и сальниковые. Этот параметр указывает на то, как именно происходит регулирование посадки пробки в корпусе крана – ведь она, не смотря на свою подвижность, должна плотно прилегать к корпусу. Это достигается либо за счет гайки, которая создает натяжение под пробкой, либо за счет сальника, который создает натяжение над пробкой.
  • По способу присоединения к трубопроводу – муфтовые, приварные.

Также они делятся на:

  • Краны без смазки, где низкое трение между пробкой и седлом крана обеспечивается конструктивно. Широко применяются в нефтехимической и химической промышленности, где использование смазки не применяется.
  • Краны со смазкой – в них специальная уплотняющая смазка периодически вводится под давлением между поверхностями корпуса и пробки. Широко используются в установках для хранения и транспортировки нефтепродуктов, в очистительных и распределительных устройствах до давления 6,3 МПа.

Вообще пробковые краны имеют . Они успешно используются на АЭС, объектах с высокой пожароопасностью, в трубопроводах с хлорной средой, при необходимости регулирования в вакууме.

Отверстие в пробке может иметь различную форму:

  • круг;
  • прямоугольник;
  • трапеция;
  • ромб;
  • вытянутый эллипс.

Самым важным достоинством этого типа запорной арматуры является то, что она может использоваться для пропуска сред, содержащих абразивные частицы.

Эксплуатировать в таких условиях шаровые краны категорически запрещено, поскольку абразивные частицы быстро проводят к коррозии затворного элемента.

Но это не единственное их достоинство.

Есть и другие положительные качества:

  • Уплотнительная поверхность крана никак не контактирует с рабочей средой, что снижает возможность ее износа и коррозии.
  • За счет большой площади уплотнительной поверхности между корпусом и пробкой случаи крана из-за повреждения затвора крайне редки.
  • Во время работы крана острые поверхности пробки отлично очищают его поверхность от различных отложений, поэтому эти устройства используются для работы с веществами, склонными к кристаллизации.
  • Между корпусом и седлом практически нет мертвых зон, где могут скапливаться наслоения.
  • Обслуживание крана не требует остановки работы трубопровода. Практически все регулировочные работы могут производиться при нормативном рабочем давлении в трубах.

  • Краны со смазкой обеспечивают длительную работу без протечек в затворе.
  • Срок службы пробковых кранов в несколько раз больше срока эксплуатации аналогичных шаровых.
  • Пробковые краны, используемые для трубопроводов большого диаметра, значительно меньше по размеру, весу и стоимости чем шаровые аналоги.
  • Краны этого типа могут работать при высоких температурах (более 200 градусов), что невозможно при использовании шаровых кранов.

К недостаткам можно отнести следующее:

  • Конусные краны сложнее в изготовлении.
  • Для их открытия – закрытия требуются большие крутящие моменты, что требует монтажа механического редуктора даже на кранах небольшого диаметра.
  • При долгом бездействии пробка «прикипает» к корпусу, что требует регулярного обслуживания и смазки.
  • Износ крана происходит неравномерно, что может стать причиной нарушения герметичности трубопровода.


«Второе пришествие» пробковых кранов

Как уже было сказано, производители трубопроводной арматуры постоянно работают над усовершенствованием конструкции пробковых кранов.

Поэтому сейчас на рынке постоянно появляются новинки, в которых использованы достижения современности:

  • Использование полимерного флюрокарбон в конструкции седла крана. Он абсолютно инертен, невосприимчив к коррозии, имеет малый коэффициент трения, устраняющий необходимость смазки притертых поверхностей крана.
  • Для решения проблемы абразивного воздействия на затвор, сейчас используется способ наплавки корпуса и пробки сплавами повышенной прочности.
  • Для снижения абразивного воздействия среды и потерь давления в затворе используются краны полнопроходного исполнения.

Таким образом, этот тип запорной арматуры вполне может вернуть себе утраченные позиции.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

кран пробковый технология ремонт

Введение

1. Назначение, принцип работы и условия эксплуатации крана пробкового

2. Анализ современных типовых конструкций кранов пробковых

3. Выбор и описание организационная структура ремонтно-механического производства

4. Выбор метода и процесса восстановления крана пробкового в ГО и ТС

5. Разработка принципиальной схемы маршрутной технологии восстановления и ремонта крана пробкового в ГО и ТС

6. Выбор и описание технологического оборудования и оснастки, необходимы для работ по проведению ремонта крана пробкового в ГО и ТС

Перечень ссылок

ВВЕДЕНИЕ

В общем случае основное назначение запорной арматуры -- перекрывать поток рабочей среды по трубопроводу и снова пускать среду в зависимости от требований технологического процесса, обслуживаемого данным трубопроводом. Кроме того, запорную арматуру применяют: 1) для переключения потока или его части из одной ветви системы в другую и 2) для дросселирования потока среды, т. е. изменения его расхода, давления и скорости (применение нежелательно, так как в условиях дросселирования запорная арматура быстрее изнашивается из-за эрозии, вибрации и других причин).

Тип и назначение трубопровода, вид запорной арматуры и место ее установки в ГО и ТС определяют конкретные особенности эксплуатации арматуры, а также характер требований, предъявляемых к ней. Так, запорные устройства фонтанной арматуры подавляющую часть времени своего функционирования находится в открытом положении, при этом через нее идет поток жидкости либо газа. Такая арматура закрывается например, для проведения ремонтных работ, врезки отвода и при аварии (разрыве трубы). При этом, естественно, арматура должна обеспечивать полную герметичность. Чтобы потери при аварии были минимальны, арматуру необходимо закрыть сразу же. Привод запорной арматуры должен быть взрывобезопасным. Поскольку скважины часто находятся в малообжитых и труднодоступных районах (пустыни, тундра, тайга), обслуживание запорной арматуры затруднительно.

Основные требования к запорным устройствам следующие. Поскольку такая арматура почти постоянно открыта, она должна иметь минимальное гидравлическое сопротивление, чтобы не снижать существенно пропускную способность линии. Такая арматура должна иметь высокую надежность, определяемую не большим числом циклов срабатывания (что в данном случае и не надо), а легкостью закрытия после длительной эксплуатации в открытом положении, либо наоборот. Для герметичного закрывания арматуры необходимо, чтобы уплотнение было высокостойким к длительному эрозионному воздействию потока добываемой жидкости, который может содержать абразивные частицы. Арматура должна быть долговечной (примерно 10--20 лет), так как операция по ее замене обходится значительно дороже самой арматуры из-за необходимости остановки работы системы в целом, сложности доставки арматуры на место и т. п. Высокая надежность запорных устройств фонтанной арматуры при минимальном обслуживании -- довольно жесткое условие при конструировании.

Одним из основных элементов ГО и ТС является кран пробковый.

1. НАЗНАЧЕНИЕ, ПРИНЦИП РАБОТЫ И УСЛОВИЯ ЭКСПЛУАТАЦИИ КРАНА ПРОБКОВОГО

Общий вид крана пробкового представлен на рис. 1.

Рис.1 Кран пробковый. Общий вид:

1- корпус; 2 -- конус; 3 -- крышка; 4 -- регулирующий винт; 5 -- манжеты; 6 -- кулачковая муфта для проворота конуса шпинделем; 7 -- шпиндель; 8 -- рукоятка; 9 -- нажимной болт для подачи смазки; 10 -- обратный клапан; 11 и 12 -- ограничитель и пружина клапана.

Уплотнение регулировочного винта осуществляется манжетами 5, поджатие которых производится грандбуксой. Управление краном осуществляется путем поворота пробки 2 (через шпиндель 7 и кулачковую муфту 6) рукояткой 8 до ее упора (рукоятки) в выступы горловины корпуса.

Для поворота пробки крана рукоятку при необходимости наращивают рукояткой 406 - ЗИП - 4, поставляемой с арматурой. Шпиндель уплотняется манжетами, которые поджимаются грандбуксой.

Смазка выполняет следующие функции: обеспечивает герметичность затвора крана; облегчает поворот пробки, создавая постоянную прослойку между уплотнительными поверхностями корпуса и пробки; предохраняет уплотнительные поверхности от коррозии и износа; предохраняет кран от заедания и заклинивания. С целью повышения коррозийной стойкости пробка крана подвергается консервации.

2. АНАЛИЗ СОВРЕМЕННЫХ ТИПОВЫХ КОНСТРУКЦИЙ КРАНОВ ПРОБКОВЫХ

Важное преимущество кранов как вида запорной арматуры -- уплотнительные поверхности во время работы остаются в контакте друг с другом и защищены от рабочей среды. Это практически устраняет опасность попадания и защемления посторонних частиц между уплотнительными поверхностями, уменьшает коррозию и эрозию уплотнений, делает возможным применять смазку последних. Использование смазки в затворе повышает герметичность надежность и долговечность работы затвора, а также снижает усилия для управления.

Другим преимуществом кранов является их самоторможение (кран не может открыться в результате давления среды). Это позволяет не применять самотормозящиеся винтовые передачи в приводе, что упрощает конструкцию, повышает к. п. д. привода и обеспечивает быстрое срабатывание (необходимо повернуть маховик или выходной вал при механическом приводе только на четверть оборота). Существенное преимущество кранов заключается в их низком гидравлическом сопротивлении и отсутствии застойных зон в корпусе вследствие прямоточности проходного канала, а также в возможности сосредоточить в одном запорном устройстве управление несколькими разветвляющимися потоками: трех- и четырехходовые краны часто применяются в технологической обвязке самых различных объектов.

К недостаткам кранов относится прежде всего их менее надежная герметичность (в основном у конических кранов с уплотнением «металл по металлу»).

Краны со смазкой, а также шаровые краны с неметаллическими уплотнительными кольцами обеспечивают полную и достаточно надежную герметичность. Шаровые краны с пластмассовыми уплотнениями, эксплуатируемые в средах высокого давления, содержащих взвешенные частицы, могут иметь недостаточную долговечность вследствие низкой твердости и стойкости пластмасс к абразивному износу. Наиболее надежны в таких условиях шаровые краны с металлическим уплотнением и смазкой.

Дисковые затворы -- наиболее простой вид арматуры. Их габаритные размеры и масса минимальны по сравнению со всеми другими типами арматуры. Их преимущества особенно значительны при больших проходах и низких давлениях. Для управления дисковым затвором необходимо повернуть вал на четверть оборота (как у кранов). Вместе с тем крутящий момент привода, необходимый для управления дисковым затвором, довольно большой.

Наиболее серьезным недостатком дисковых затворов является сложность обеспечения герметичности уплотнения. В затворах больших условных проходов на максимально возможные для таких затворов давления (порядка 10 кгс/см 2) конструкция уплотнения обычно сложна и не всегда обеспечивает надежную работу.

Классификация запорных кранов приведена на рис. 2:

Рис. 2 Классификация кранов пробковых

Достоинства крана, как запорного устройства, заключается в следующем: простота конструкции, малое гидравлическое сопротивление, небольшая высота (без учета размеров привода), возможность безколодезной установки и установки в любом рабочем положении на трубопроводе, простая форма проточной части корпуса, отсутствие застойных зон, полнопроходность в шаровых кранах, допускающая возможность механизированной очистки трубопровода, простое управление (поворот пробки на 90°), малое время, затрачиваемое на поворот, хорошая защита и возможность смазки уплотнительных поверхностей деталей рабочего органа, применимость для вязких или загрязненных сред, суспензий, пульп и шламов, возможность использования в качестве запорного или регулирующего устройства. Вместе с тем, краны имеют следующие недостатки: для управления кранами с большим условным диаметром прохода требуется большие крутящие моменты, необходимы тщательное обслуживание и смазка уплотнительных поверхностей конической пробки и корпуса во избежание "прикипания" пробки к корпусу, усложнена притирка конической пробки и корпуса, неравномерный по высоте износ конусных пробок, что в процессе их эксплуатации приводит к снижению герметичности запорного органа. Поэтому для ответственных объектов все большее применение получают шаровые краны, которые используются для трубопроводов с условным диаметром прохода Dу < 1400 мм и более при давлениях ру < 16 МПа. На линейной части магистральных газопроводов шаровые краны являются основным запорным устройством. Они получили широкое применение и на других объектах газопроводов.

Для того, чтобы снизить крутящий момент, необходимый для управления конусными кранами, и износ уплотнительных поверхностей, применяются краны со смазкой. На конусных соприкасающихся поверхностях этих кранов пробка и корпус имеют каналы, заполняемые специальной смазкой. Смазка периодически вручную или автоматически подается по каналам шпинделя, корпуса и пробки.

Принцип работы кранов с подъемом пробки заключается в том, что при открывании и закрывании прохода предварительно производится подъем пробки на некоторую высоту, необходимую для того, чтобы уплотнительные поверхности пробки и корпуса разошлись, что уменьшает во время поворота пробки трение и износ уплотнительных поверхностей. Это осуществляется путем поворота шпинделя или ходовой гайки. После поворота пробки на 90° она снова "садится" на свое место. В кранах с ручным управлением эти действия выполняются последовательно вручную - с помощью шпинделя и бокового рычага, в кранах с поршневым гидроприводом или электроприводом - специальным механизмом.

Шаровые краны с пробкой в виде шара со сквозным отверстием для прохода среды получают все более широкое применение для различных условий работы. По принципу герметизации запорного органа их можно разделить на две основные разновидности: с плавающим шаром и с шаром на опорах. Применяются иногда и конструкции с плавающими уплотнительными кольцами. Сферические пробка и корпус обладают большой прочностью и жесткостью.

Для кранов с малым диаметром прохода наибольшее применение получили конструкции с плавающей пробкой, в которых пробка не связана жестко со шпинделем, а может смещаться от оси шпинделя. Под действием давления среды пробка прижимается к уплотнительному кольцу корпуса, обеспечивая герметичное перекрытие запорного органа.

При больших условных диаметрах прохода и давлениях плавающая пробка создает чрезмерно большие нагрузки на уплотнительное кольцо, что затрудняет работу крана, поэтому для таких условий рекомендуются конструкции с фиксированной пробкой. Фиксирующая цапфа пробки может иметь подшипники качения или самосмазывающиеся подшипники скольжения, которые в настоящее время широко используются в шаровых кранах. Для вязких и застывающих (кристаллизующихся) сред (парафинистых мазутов, фенолов, смол) применяются краны с паровым обогревом корпуса. Используются краны как с конусной или шаровой, так и с цилиндрической пробкой.

Рис. 3 Краны пробковые конусной и шаровой конструкции

Краны изготовляются из латуни, бронзы, серого чугуна, стали. Краны из латуни (Dу < 80 мм) применяются для сред с ру < 2,5 МПа при tp < 225°С. Чугунные краны (Dу < 150 мм) используются для воды, нефти, смазочных масел, топливного газа, нейтральных газов, фенолов при ру < 1,6 МПа и tp < 150°С. Стальные краны (Dу < 1400 мм) применяются для топливных газов, сжиженных газов, нефтепродуктов, каменноугольной смолы, пека при ру < 16 МПа и tp < 500°С. Латунные краны изготовляются как пробно-спускные и как запорные. Пробно-спускные краны (с условным диаметром Dу, равным 6, 10, 15 и 20 мм) при ру = 1 МПа и tp = 225° С предназначены для установки на котлы и резервуары. Они имеют один присоединительный патрубок с наружной трубной дюймовой резьбой и один спускной патрубок для выпуска рабочей среды, который используются для взятия проб и дренажа.

На рисунке слева представлены чугунные пробковый и шаровой краны и их монтажные размеры (в скобках приведены их обозначения по классификациям СЕИР и ООН).

3. ВЫБОР И ОПИСАНИЕ ОРГАНИЗАЦИОННАЯ СТРУКТУРА РЕМОНТНО-МЕХАНИЧЕСКОГО ПРОИЗВОДСТВА

Организация ремонтной службы имеет важное значение для газовой и энергетической отраслей производства, так как от качества и своевременного ремонта зависят эффективность работы газового оборудования и трубопроводных систем, экологическая безопасность данных отраслей. В задачи ремонтно-эксплуатационных подразделений входят:

Надзор и уход за действующими системами газоснабжения в целях исправления мелких недочетов и предупреждения возможных нестандартных ситуаций в работе газового оборудования и трубопроводных систем;

Своевременный планово-предупредительный ремонт газового оборудования и трубопроводных систем, основного и вспомогательного оборудования, их защиты, а также устройств диагностики;

Капитальный ремонт оборудования;

Модернизация оборудования или реконструкция газовых и энергетических систем.

Объектом ремонта является все оборудование, которым располагает газовое или энергетическое производство региона, как основное, так и вспомогательное. В небольших населенных пунктах и районах ремонт газового оборудования выполняется одним ремонтным подразделением, и вся ремонтная служба сосредоточена в одном хозяйстве. Магистральные транспортные газовые системы, сооружения на них, а также ремонт в крупных городах газового оборудования, систем газоснабжения производится соответствующим ремонтным подразделением этих хозяйств. Ремонтно-механические предприятия осуществляют восстановление типовых узлов, например, арматуры, приборов, компрессоров и т. д., а также ремонт трубопроводных систем, средств защиты и диагностирования. Ремонтно-строительные работы осуществляет соответствующее подразделение. На компрессорных станциях ремонт газового оборудования чаще всего производится собственными силами.

Осуществление всех видов ремонтных работ в газовых подразделениях распределяется между ремонтно-механическим производством и ремонтными базами эксплуатационников газовых участков или других служб в зависимости от размера и характера газового энергетического хозяйства. В связи с этим устанавливается та или иная форма организации производства ремонтных работ: централизованная, децентрализованная или смешанная.

Централизованная форма организации предусматривает выполнение всех видов ремонтных работ и изготовление дефицитных запчастей специализированными ремонтно-механическими, ремонтно-строительными и другими подразделениями газовых и энергетических хозяйств. На эти подразделения возложены обязанности по выполнению соответствующих ремонтно-механических, сварочных, строительных и других работ при осуществлении модернизации оборудования и реконструкции газовых трубопроводных систем. Эта организационная форма применяется на крупных газовых предприятиях. Технологический процесс дифференцированный, с использованием современного ремонтно-механического оборудования, технологической оснастки и высококачественных вспомогательных материалов.

При децентрализованной форме организации все виды ремонтных работ, включая капитальных, модернизацию газового оборудования, изготовление запчастей, выполняют как эксплуатационные участки, так и специализированные ремонтно-механические подразделения для собственных потребностей эксплуатационных служб газовой промышленности и газовых энергетических хозяйств. Эта форма организации ремонта является распространенной и на предприятиях различной формы собственности. В этом случае ремонтно-механические мастерские, цеха газового и энергетического хозяйств изготавливают и восстанавливают детали и узлы по заказам эксплуатационных и ремонтных служб, а также отдельных потребителей газа, нефти и других энергоносителей. Здесь же может производиться капитальный ремонт сложного газового оборудования, например, газовых турбин и компрессоров, средств автоматики и диагностики, запорной арматуры, т. е. выполнение отдельных наиболее трудоемких и сложных ремонтных работ.

При смешанной форме организации все виды ремонтных работ, кроме капитального, производят ремонтные региональные или участковые ремонтные базы. Капитальный ремонт, а иногда и средний, изготовление запчастей и модернизацию оборудования выполняет ремонтно-механическая база. Такая форма организации ремонтных работ широко распространена в газовом и энергетическом хозяйствах, на промышленных предприятиях, промыслах и транспортных магистралях. Все виды ремонтных работ, кроме капитального ремонта сложной техники, выполняются на месте нахождения прибора, агрегата. Сложные и трудоемкие узлы, агрегаты, устройства перевозятся в ремонтно-механические производства, которые оснащены всем необходимым для проведения восстановительно-ремонтных, испытательных работ и могут обеспечить их высокое качество.

Специализация ремонтно-механических предприятий в общем виде предусматривает организацию ремонта по восстановлению определенного вида газового оборудования и систем газоснабжения, отдельных их элементов или выполнение определенных видов ремонтных работ. В соответствии с этим различают специализацию: предметную, подетальную и технологическую. Применительно к ремонтному производству газового оборудования трубопроводных систем с широкой номенклатурой изделий предметной специализацией являются комплексный ремонт компрессорных станций, магистральных трубопроводов, газорегуляторных пунктов и т. д.; подузловой, подетальный -- ремонт шатунно-поршневой группы компрессоров, рабочих колес компрессоров, запорной и регулирующей арматуры, ремонт и изготовление отводов и других узлов и агрегатов. При этом ремонтно-восстановительные работы могут производиться в зависимости от технологической оснащенности ремонтной базы. Технологический процесс как механической, так и иной обработки является результатом воздействия рабочего на детали или агрегат при помощи станка и инструмента, сварочного аппарата.

Большинство ремонтно-механических предприятий газовой промышленности и энергетических хозяйств регионов имеют смешанные организационные структуры ремонтных производств. Многономенклатурная - для ремонта полнокомплектного газового оборудования региона

Однотипное -- для ремонта определенных типов комплектов газового

Оборудования и газовых систем (узкономенклатурная)

Смешанная - ремонт широкой и узкой номенклатуры газового оборудования на базе готовых узлов и агрегатов.

4. ВЫБОР МЕТОДА И ПРОЦЕССА ВОССТАНОВЛЕНИЯ КРАНА ПРОБКОВОГО В ГО и ТС

Одним из наиболее часто встречающихся видов дефектов является потеря герметичности резьбовых соединений патрубков кранов пробковых

Ремонт резьбовых отверстий с помощью резьбовой втулки производится для восстановления сорванной резьбы в тех случаях, когда резьба не может быть увеличена под ремонтный размер, например, резьбовые отверстия под сливные пробки, краники.

Известно, что большинство приборов присоединяется к газовым сетям резьбовым соединением. Ремонт резьбовых соединений относится к разряду газоопасных, так как утечка газа чаще всего возникает в местах этих соединений. Обычно это происходит, когда из-под муфты или контргайки вследствие некачественной подмотки резьбового соединения льноволокном идет травление газа. Технология включает подмотку резьбового соединения льноволокном на краск. Льноволокно должно быть без костры и других включений. Прядь наматывают по ходу резьбы от начала до конца; началом резьбы в этом случае считается первая нитка, на которую будет навернута муфта. Подматывают его ровно, без комков и утолщений, чтобы избежать выдавливания волокна муфтой и необходимости повторного выполнения операции. Следует знать, что это связано с многими причинами, но чаще всего с отсутствием соответствующего желобка -- углубления с внутренней стороны муфты, что влечет за собой размалывание и выдавливание льноволокна при натягивании контргайки на муфту. Такие муфты лучше менять сразу по мере выявления, чтобы избежать повторения многократных утечек газа в одних и тех же местах. При подмотке под контргайку льноволокно рекомендуется свивать в тонкую веревку -- жгутик и наматывать по ходу вращения контргайки, т. е. по часовой стрелке. Краску наносят обычно после выполнения обмотки, хотя лучшие результаты, конечно, дает предварительное их нанесение на прядь волокна. Практика показывает, что наилучшие результаты получаются в том случае, когда в качестве подмотки применяют современные уплотняющие материалы, которые в значительной мере сокращают время ремонта.

Вследствие того, что резьба самой контргайки бывает деформированной, совершенно правильным выходом в этом случае будет замена контргайки. Ремонту или восстановлению контргайки не подлежат.

Если деформированная резьба является резьбой сгона, то лучше всего утечку устранить заменой сгона. Если повреждена резьба на конце трубы разводки, то выполнение ремонта последней возможно одним из следующих способов: резьбовое окончание трубы длиной не менее 10 см отрезается и сваркой соединяется новый конец с резьбой; резьбовое окончание трубы с помошью плашки удлиняется на длину поврежденной части резьбы, контргайка удаляется и вместо нее устанавливается вторая муфта. Так как вторая муфта может опереться на целые нитки резьбы, то при наличии подмотки она хорошо и надежно может затянуть основную муфту (рис. 5.4).

В практике ремонта газового оборудования применяется способ изменения положения рабочих поверхностей. Такой ремонт заключается в том, что взамен изношенных рабочих поверхностей детали изготавливают новые, в других местах детали без снижения ее прочности. К подобным элементам детали относятся шпоночные пазы на валах и в отверстиях, отверстия под болтовые соединения.

Изношенное шпоночное гнездо изготавливают на новом месте, смещенном относительно старого на 90 или 120°. На валах новое шпоночное гнездо фрезеруют, а в отверстиях долбят или протягивают.

Обычно способ ремонта заменой элемента детали применяется в тех случаях, когда на сложной детали с большим числом рабочих поверхностей одна или несколько поверхностей имеют: чрезмерный износ, а остальные изношены незначительно. В этом случае изношенный элемент детали удаляют и заменяют его вновь изготовленным. Заменяемый элемент с основной деталью соединяют резьбой или напрессовкой с последующей заваркой.

Сваркой называют процесс получения неразъемного соединения металлических изделий местным сплавлением или пластическим деформированием. Сварка -- один из ведущих технологических процессов изготовления и ремонта газовых энергетических систем. Ее широкое применение в практике ремонта газового и другого оборудования определяется возможностью создания наиболее целесообразных, эффективных способов, восстановления деталей и агрегатов.

Дуговая сварка -- самый распространенный способ сварки плавлением, широко используемый во всех областях техники, Сварка позволяет создавать и ремонтировать конструкции, отличающиеся высокой технологичностью, обеспечивая короткие сроки изготовления и ремонта, восстановления и модернизации газового оборудования и трубопроводных систем при большой экономии труда и металла. Дуговая сварка основана на использований тепловой энергии электрической дуги, обладающей высокой температурой. В связи с тем, что современные виды ручной, полуавтоматической и автоматической сварки дают возможность успешно решать задачи наиболее рационального соединения металла, она в ближайшем будущем останется основным видом сварки плавлением. Дуговую сварку широко используют в ремонтно-эксплутационной практике газоэнергетики, так как сваркой можно получать соединения, прочность которых равна или приближается к прочности основного металла.

Наплавка является разновидностью сварки и заключается в том, что на поверхность детали наносят слой расплавленного металла, предназначенного для восстановления размеров и повышения ее износостойкости, например, наплавку в среде углекислого газа ведут постоянным током обратной полярности.

По сравнению с наплавкой под слоем флюса наплавка в среде углекислого газа отличается более высокой производительностью, что объясняется отсутствием потерь тепла на плавление флюса. К недостаткам этого процесса следует отнести большое разбрызгивание металла и низкие механические свойства наплавленного слоя металла.

Одной из разновидностей сварки является пайка, которая, наряду с кузнечной сваркой, является древнейшим способом; соединения неразъемных соединений и наращивания металла. Пайка отличается от других видов сварки следующими характерными особенностями: паяное соединение деталей создается расплавлением и кристаллизацией металлической связки, т.е. припоя; припой отличается по составу и свойствам от соединяемых металлических деталей, и заполнение зазора жидким припоем между соединяемыми деталями происходит с участием капиллярных сил. Прочность паяных соединений ниже сварных. Пайка главным образом применяется при соединении проводов автоматики, газовой аппаратуры. Другой сваркой в процессе эксплуатации систем газоснабжения, в частности, устраняют трещины, пробоины, разрывы, отколы, обломы, наращивают наплавкой изношенные поверхности деталей. Современная техника и технология ремонта располагает многочисленными видами сварки, в том числе различными способами дуговой сварки. Однако не все металлы образуют при сварке высококачественные, надежные сварные соединения. Изменение или сохранение свойств металла при сварке вызывается комплексом; одновременно протекающих процессов нагрева и плавления основного, присадочного металла под воздействием газов и флюсов, кристаллизации металла шва и взаимной кристаллизации в зоне сплавления. Признаком плохой свариваемости считается склонность свариваемых металлов к перегреву, образованию закалочных структур, охрупчиванию в зоне сварки, образованию трещин в металле сварного шва и переходной зоне, образованию других дефектов: пор, раковин, несплавлений и т. д. На свариваемость металлов влияет способ сварки, режим сварки, химический состав присадочного металла, тип сварного соединения, толщина свариваемых элементов, условия закрепления элементов соединения при сварке и др.

Ручная сварка плавящимся металлическим электродом в практике ремонта газовых систем широко используется при восстановлении деталей и узлов из углеродистой и легированной сталей всех марок толщиной от 1 мм и выше, а также деталей из чугуна и цветных металлов.

Исходя из того, что температура дуги на аноде выше, чем на катоде, при наплавке тонкого слоя или легкоплавящегося металла, или чувствительных к перегреву высокоуглеродистых легированных сталей электрическую дугу питают током обратной полярности, т. е. минус источника тока подключают к наплавляемой детали. Теплота, выделяемая сварочной дугой, не вся переходит в сварочный шов, т. е. коэффициент полезного действия при сварке открытой дугой равен 0,5...0,65; электродами с покрытием -- 0,75...0,85; под флюсом -- 0,8...0,92 и в среде защитных газов 0,5...0,6.

В последние годы ремонтники применяют и другие, более совершенные способы сварки. При использовании любого из перечисленных выше способов сварки образуется расплавленная ванна металла, сопровождающаяся его рекристаллизацией при остывании, а также перекристаллизацией. На границе сварочной ванны и основного металла образуется зона термического влияния (ЗТВ). Изменения, происходящие в этой зоне, оказывают существенное влияние на качество сварного соединения. В результате сварки в зоне термического влияния происходят структурные изменения механических свойств металла, т. е. изменяются его твердость, пределы текучести, выносливости и др. Поэтому при оценке качества сварки нужно учитывать не только состояние самого наплавленного металла, но и состояние зоны термического влияния.

Глубина зоны термического влияния зависит от способа и режима сварки, химического состава свариваемых металлов, начальной температуры детали и температуры окружающего воздуха. При газовой сварке глубина зоны термического влияния достигает 25...30 мм, а при электрической -- 2...6 мм. Чем выше сварочный ток или мощность газовой горелки, тем больше глубина зоны термического влияния. Подбором оптимального режима сварки глубина этой зоны может быть снижена.

При сварке и наплавке деталей из-за неравномерного их нагрева, а также изменения объема металла при нагреве и охлаждении возникают внутренние термические напряжения, которые способствуют появлению остаточных деформаций, а иногда и трещин.

При сварке и наплавке металл ванны подвергается воздействию окружающего воздуха и под влиянием высоких температур окисляется, насыщается азотом и водородом. Соединение металла с этими газами приводит к образованию нежелательных химических соединений в виде закиси железа, окиси железа, нитридов железа и других соединений, а также к выгоранию легирующих элементов. Качество сварки зависит от того, как удается оградить сварочную ванну от влияния окружающего воздуха и обеспечить ее легирование необходимыми элементами.

5. РАЗРАБОТКА ПРИНЦИПИАЛЬНОЙ СХЕМЫ МАРШРУТНОЙ ТЕХНОЛОГИИ ВОССТАНОВЛЕНИЯ И РЕМОНТА КРАНА ПРОБКОВОГО В ГО И ТС

Номер операции

Наименование работ

Оборудование

Приспособление

Режущий инструмент

Измерительный

инструмент

Транспортная.

доставка детали на рем. участок

электрокар

Разрезная.

Вырезка поломанного

Газорезный аппарат

Газорезный аппарат

Разрезная

Вырезка заготовки согласно размеру. Выполнение фаски на концах заготовок согласно размеру

Газорезный аппарат

Механическая.

Нарезка внутренней резьбы.

Сварочная

Сварка герметичным швом

Сварочный стол

Сварочный аппарат

электрод

Слесарная зачистка

Зачистка сварочных швов

Молоток слесарный

Зубило слесарное

Контрольная

Проверка линейных размеров

Линейка металлическая

Транспортная.

Перемещение детали на склад готовой продукции

электрокар

6. ВЫБОР И ОПИСАНИЕ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ И ОСНАСТКИ, НЕОБХОДИМЫ ДЛЯ РАБОТ ПО ПРОВЕДЕНИЮ РАБОТ ПО РЕМОНТУ КРАНА ПРОБКОВОГО В ГО И ТС

ТОКАРНЫЙ СТАНОК

Рис. 5 Станок токарный 1К-62

Все части токарного станка установлены на прочной основе -- станине. Та часть станка, которая держит и вращает деталь, называется передней бабкой. В ее корпусе имеется шпиндель со ступенчатым шкивом на одном конце и патроном -- на другом. У мощных скоростных станков, которыми оснащены наши заводы, шкив заменен коробкой скоростей. На другом конце станины находится задняя бабка, которая удерживает правый конец детали при обработке в центрах. В верхней части корпуса задней бабки находится пиноль, двигающаяся влево и вправо с помощью маховичка с винтом и гайки. В коническое отверстие в передней части пиноли вставляется центр. В случае надобности сюда же можно устанавливать сверла, развертки и другой инструмент. Заднюю бабку можно передвигать по направляющим станины, устанавливая ее на нужное расстояние, в зависимости от размеров обрабатываемой детали.

Между передней и задней бабками помещается суппорт с резцедержателем. Нижняя часть суппорта, называемая кареткой или продольными салазками, скользит по направляющим станины, перемещая резец вдоль обрабатываемой детали. Поперечное движение резца осуществляется с помощью поперечных салазок, в верхней части которых помещается поворотная часть суппорта. Она, как и станина, имеет направляющие, по которым двигаются верхние салазки суппорта с резцедержателем. Резцедержатель может быть устроен по-разному, это зависит от величины нагрузки, действующей на резец. Обычно же на станках средних размеров ставятся резцовые головки, позволяющие закреплять одновременно четыре резца. Для поворота головки нужно отвернуть рукоятку или гайку в верхней ее части. В качестве двигателя для станка используют электромотор, соединенный со ступенчатым шкивом приводным ремнем из кожи или прорезиненной материи. Ременная передача работает хорошо, когда ремень достаточно натянут и охватывает большую часть шкива. Для хорошего натяжения ремня у легкого настольного станка можно сделать приспособление, изображенное на рисунке. Ролик удерживает ремень в натянутом состоянии с помощью сильной пружины. Длина шпилек, соединяющих основание приспособления, должна быть несколько больше ширины шкива или равна ей. Ролик с боковинами перемещается по одной из шпилек, как по оси. Токарные станки уже много веков являются основным производственным оборудованием. По статистике более 60% всех обрабатываемых деталей проходят через токарные станки. В последнее время эта доля стала еще больше -- теперь на токарных станках проводится полная обработка деталей, включая фрезерование, сверление, нарезание резьбы и многое другое (например, гидростатическое накатывание). Таким образом, фактически на рынке начинают доминировать токарные обрабатывающие центры.

Токарные центры предназначены для комплексной обработки современным режущим инструментом с высокой скоростью сложных деталей различного профиля за одну установку: токарная, сверлильная, фрезерная обработка в одной операции. В автоматическом цикле на них можно обрабатывать наружные и внутренние поверхности деталей типа тел вращения со ступенчатым и криволинейным профилем: точение, растачивание конических и фасонных поверхностей, подрезка торцов, точение канавок, нарезание резьбы резцами, метчиками, плашками и др. в деталях типа крышек, фланцев, втулок, валиков, коротких осей, мелких корпусов, стаканов. Кромеобычной токарной обработки позволяют обрабатывать внецентровые отверстия (с продольным и поперечным расположением оси), фрезеровать канавки, лыски, криволинейные поверхности и др.

Электродуговая сварка - наиболее широко применяемая группа процессов сварочной технологии. При электродуговой сварке кромки соединяемых деталей расплавляются электрическим дуговым разрядом. Для сварки необходим сильноточный источник питания низкого напряжения, к одному зажиму которого присоединяется свариваемая деталь, а к другому - сварочный электрод.

Главная роль дугового разряда - преобразование электрической энергии в теплоту. При температуре ок. 5500? С газ в разряде представляет собой смесь ионизованных частиц, определяющих поведение присадочного металла. Характер дугового разряда зависит от присадочного металла, основного металла, защитной среды, параметров электрической цепи и других факторов.

Напряжение дугового разряда связано прямой зависимостью с длиной дуги: чем длиннее дуга, тем выше напряжение разряда. Точная форма этой зависимости определяется условиями разряда - наличием или отсутствием защитной газовой атмосферы, свойствами покрытого электрода, наличием и свойствами флюса и т.д. При любых условиях дугового разряда существует определенная длина дуги, отвечающая оптимальным условиям сварки.

Ручная дуговая сварка с защитой зоны сварки. Этот наиболее распространенный вид электросварки применяется для сварки мягкой и легированных сталей, чугуна, нержавеющих сталей и в некоторых случаях цветных металлов. Электрод имеет вид стержня диаметром 1,5-10 мм, закрепляемого в ручном электрододержателе.

При прикосновении электрода к свариваемой металлической детали замыкается цепь тока, и конец электрода нагревается. Если затем электрод отвести на 3-5 мм от детали, то устанавливается дуговой разряд, за счет которого далее и поддерживается ток. Интенсивный локальный нагрев вызывает расплавление основного металла (металла детали) вблизи дуги разряда. Конец электрода тоже расплавляется, и металл электрода вливается в расплавленную «сварочную ванну» основного металла.

Сварщик, следя за тем, чтобы дуговой промежуток не изменялся, ведет электродом вдоль состыкованных кромок свариваемых деталей. При прохождении электрода образуется расплавленная сварочная ванна из основного металла и металла электрода, которая затем сразу же затвердевает. В результате однократного прохождения дуги по контуру сварки образуется сварочный валик.

Сварщик должен иметь на голове специальный щиток со стеклянными светофильтрами для защиты лица, головы и шеи от сварочных брызг, а глаз - от слепящего света. Кроме того, необходимы специальные перчатки из теплоизолирующего и негорючего материала с крагами, а также фартук. Описанный способ сварки довольно универсален и применяется как в цеховых, так и в полевых условиях для сварки деталей толщиной от 1,5 мм до 15 см и более.

Ключом к успеху такой технологии явилось создание густого флюса - обмазки, окружающей металлический электрод. Флюс защищает дугу и сварочную ванну от загрязнения газами, содержащимися в атмосферном воздухе, добавляет раскислители для очистки сварочного металла, повышает стабильность плазмы дугового разряда и в некоторых случаях обеспечивает подвод легирующих компонентов, а также порошкообразного основного металла для ускорения наплавки сварочного металла.

Сварка под флюсом. Этот способ сварки аналогичен предыдущему, но отличается от него тем, что электродом служит проволока, подаваемая с катушки и подводимая к месту сварки через слой флюса, наносимый по мере продвижения держателя электрода или сварочной головки. Сама дуга при этом не видна. Процесс сварки допускает почти полную автоматизацию и может обеспечивать высокую производительность при большой толщине свариваемых деталей.

Скорость сварки при такой технологии больше, но требуется время для подготовки деталей к сварке. Поэтому сварка под флюсом экономически оправдана только при большом объеме работ.

Газоэлектрическая сварка расплавляемым электродом. Этот вид сварки охватывает ряд родственных технологий, подобных сварке под флюсом. Роль флюса в них играет газ, выходящий из сварочного сопла и охватывающий конец электрода, дугу и сварочную ванну. Можно получать разные характеристики дуги, используя аргон, гелий, углекислый газ или смесь перечисленных газов и вводя при необходимости малые добавки кислорода. Главные преимущества таких технологий - возможность сварки химически активных металлов (алюминия, магния, нержавеющей стали, меди, никеля), чистота, возможность визуального контроля, большая скорость и удобство сварки в трудных положениях. Диапазон толщин - от самых малых до очень больших. Для сварочного сопла может быть предусмотрено водяное охлаждение.

Важные разновидности такой технологии - дуговая сварка методом опирания и варианты импульсно-дуговой сварки. Эти разновидности позволяют получать некоторые специфические характеристики сварки за счет изменения условий переноса металла через дугу. Они дают некоторые преимущества при сварке тонких листов в любом положении, а также деталей большого поперечного сечения в вертикальном и навесном положениях.

ПЕРЕЧЕНЬ ССЫЛОК

1. Андреев ГС. и др. Сварка и ее контроль на магистральных трубопроводах. -- Л.: Недра, 1973. - 176 с.

2. Бородавкин П.П. Подземные магистральные трубопроводы. -- М.: Недра, 1982. - 384 с.

3. Гордюхин А.И. Газовые сети и установки. -- М.: Стройиздат, 1978. -- 383 с

4. Иванов Б.И. Очистка металлических поверхностей пожаробезопасными составами. -- М.: Машиностроение, 1979. -- 183 с.

5. Егоров М.Е. и др. Технология машиностроения. Учебник. -- М: Высш. школа, 1976. -- 534 с.

6. Капцов ИИ. Сокращение потерь газа на магистральных газопроводах. -- М.: Недра, 1988. -- 160 с.

7. Козлов Ю.С. и др. Очистка изделий в машиностроении. -- Киев: Техника, 1982. - 264 с.

8. Малолетков Е.К., Гордеев Л.Ф. и др. Организация и технология ремонта строительных машин. -- М.: Госстройиздат, 1962. -- 276 с.

9. Масловский В.В. Оборудование ремонтно-механических предприятий газоэнергетики. Уч. пособие. -- Харьков: ХГАГХ, 2002. -- 173 с.

10. Масловский В.В. Технология обработки на доводочно-притирочных станках. Учебник. -- М.: Высш. школа, 1979. -- 151 с.

11. Масловский В.В. Справочник по доводочным работам. -- Харьков: Прапор, 1985. -- 121 с.

Размещено на www.allbest.ru

Подобные документы

    Устройство, принцип действия и технология производства работ башенного крана с поворотной башней. Построение грузовой характеристики стрелового крана. Выбор каната и двигателя грузоподъемного механизма крана. Построение грузовой характеристики, ее анализ.

    курсовая работа , добавлен 29.05.2014

    Общее описание и главные технические характеристики исследуемого крана, принцип его работы, внутреннее устройство и взаимосвязь компонентов, функциональные особенности и сферы промышленного применения. Методика расчета массы крана, механизма передвижения.

    курсовая работа , добавлен 10.06.2014

    Определение времени совмещённого цикла крана, режимов работы механизмов, статистической мощности электродвигателя. Выбор редуктора, тормоза и муфты. Обоснование компоновочной схемы лебедки. Расчет производительности крана, блоков, нагрузок на опоры крана.

    курсовая работа , добавлен 05.11.2014

    Назначение генеральных размеров моста крана. Силы тяжести электродвигателя и редуктора механизма передвижения. Давление колес тележки на главную балку. Расчетная схема на действие вертикальных нагрузок. Определение усилий в главной балке моста крана.

    курсовая работа , добавлен 10.06.2011

    Общая схема металлоконструкции. Конструктивные параметры мостового крана. Выбор материалов для несущих и вспомогательных элементов. Определение расчетных сопротивлений и допустимых напряжений. Расчет нагрузок конструкций по методу предельных состояний.

    контрольная работа , добавлен 06.08.2015

    Назначение и устройство крана. Приборы и устройства безопасности. Патентный анализ. Выбор кинематической схемы. Расчёт механизма подъёма груза. Выбор крюковой подвески и двигателя крана. Максимальное статическое усилие в канате. Расчёт барабана.

    курсовая работа , добавлен 08.12.2013

    Виды и принцип работы запорной арматуры, которая перекрывает поток рабочей среды по трубопроводу и снова пускает ее в зависимости от требований технологического процесса, обслуживаемого данным трубопроводом. Классификация кранов, эксплуатация и смазка.

    реферат , добавлен 12.05.2011

    Обзор существующих конструкций кранов: однобалочных и двухбалочных. Определение разрывного усилия каната, размеров барабана и мощности двигателя механизма подъема. Выбор механизма передвижения крана и тележки. Расчет металлоконструкции мостового крана.

    курсовая работа , добавлен 31.01.2014

    Проект технологического процесса восстановления проушины кольцевой рамы башенного крана КБМ-401П: назначение, характеристика, основные дефекты крепления проушины. Техническое нормирование операций, конструкторская разработка; расчеты режимов обработки.

    курсовая работа , добавлен 24.11.2013

    Технические характеристики механизмов крана, режимы их работы. Требования, предъявляемые к электроприводам мостового крана. Расчет мощности и выбор электродвигателей привода, контроллера для пуска и управления двигателем, пускорегулирующих сопротивлений.

Положительной чертой советских газовых кранов является их длительный срок эксплуатации и ремонтопригодность. Однако такой кран требует регулярного обслуживания, поскольку герметичность такого устройства обеспечивается за счет притирки пробки крана к корпусу, подробнее об этом читайте в нашей статье.

Появление запаха газа в районе пробкового крана отнюдь не повод для его замены, однако вызвать представителя газовой службы для устранения причины утечки все же придется.

В данной статье пошагово описан процесс ревизии двух наиболее популярных газовых пробковых конусных кранов: муфтового и натяжного. Отметим, что данная статья не является призывом к действию, а предлагается исключительно в ознакомительных целях, поскольку газоопасные работы должны выполняться специализированными организациями, имеющими необходимые разрешения. Она будет полезна тем, кто желает лично убедиться в качестве ревизии крана, выполненной газовой службой.

Подготовительные работы

Прежде чем приступить к ревизии газового крана, необходимо выяснить, действительно ли источником утечки является кран. Для этого необходимо обмылить кран, нанеся пену на соединения. Находим места пропускания газа, чтобы убедиться, что причиной утечки действительно является кран.

Примечание. Шланг, ведущий к газовому оборудованию , был специально снят, чтобы показать, что утечка газа снаружи очень часто означает негерметичность самого крана. Потому варианты промазать корпус смазкой по наружной поверхности, заклеить пластилином и прочие народные методы не решают полностью проблему, а только создают иллюзию безопасности.

Для проведения ревизии нет нужды снимать газовый кран с газопровода. В данной статье это выполнено исключительно для наглядности процесса. Однако необходимо перекрыть подачу газа к газопроводу и стравить давление, а также предупредить соседей, чтобы они отключили все газопотребляющие приборы!

Необходимый инструмент

Для выполнения ревизии понадобится следующий инструмент:

  • широкая плоская отвертка
  • рожковый ключ № 17
  • смазка для газовых кранов
  • ветошь

Примечание. При отсутствии специальной газовой смазки ее вполне можно заменить графитной смазкой. Нежелательно использовать солидол, т. к. его свойства сильно зависят от температуры.

Процесс ревизии крана пробкового конусного муфтового

Плоской отверткой откручиваем резьбовую заглушку.

Вынимаем пружинку.

Плоской отверткой немного проворачиваем пробку крана, надавливая на нее. Пальцем второй руки придерживаем пробку. При ее заклинивании можно немного пристукнуть молотком по отвертке.

Примечание. Не повредите отверткой внутреннюю поверхность крана и не роняйте пробку, во избежание возникновения царапин и забоин!

Вынимаем пробку.

Ветошью протираем корпус крана и пробку. Засохшую смазку можно удалить бензином или спиртом.

Отверткой удаляем остатки старой смазки из пробки.

Наносим смазку тонким слоем на пробку.

Помещаем смазанную пробку в корпус.

Набиваем смазку в полость, где располагается пружина.

Размещаем пружину в пазу пробки.

Смазываем резьбовую заглушку и вкручиваем ее в корпус на несколько витков отверткой. Пружина должна попасть в паз на пробке.

Закручивая отверткой резьбовую заглушку, регулируем плавность хода крана. Проверяем, проворачивая пробку отверткой. Кран не должен проворачиваться с усилием, но и не должен ходить чересчур легко.

Процесс ревизии крана пробкового конусного проходного натяжного

Придерживая пробку крана ручкой, откручиваем 17-м ключом по очереди контргайку и гайку.

Снимаем ограничительную шайбу.

Надавливаем пальцем на шпильку пробки, проворачивая пробку ручкой. При заклинивании пробки можно немного пристукнуть по шпильке молотком, предварительно накрутив на нее гайку, чтобы не повредить резьбу. Бить нужно по гайке!

Вынимаем пробку.

Очистка пробки и корпуса с последующей смазкой и сборкой производится аналогично муфтовому крану. Очищаем ограничительную шайбу от старой смазки.

Наносим смазку на корпус крана в месте прилегания ограничивающей шайбы.

Надеваем ограничивающую шайбу на паз шпильки. Пробку крана для этого ставим в полуоткрытое положение.

Накручиваем гайку прорезью к пробке крана.

Зажимая гайку, регулируем степень натяжения крана. Проверяем, проворачивая ручку крана. Кран не должен проворачиваться с усилием, но и не должен ходить чересчур легко. Поджимаем контргайку.

Еще раз проверяем плавность хода.

Результаты проделанной работы

После подачи газа и контрольного обмыливания, утечек газа не обнаружено! Кран герметичен и стал работать гораздо приятнее, без заеданий!







2024 © fealta.ru.