Обжиговые печи. Барабанные печи


Назначение барабанной печи

Назначение данной вращающейся обжиговой печи – нагревание подаваемого материала до максимальной температуры 950 °C. Конструкция оборудования основана на изложенных ниже условиях процесса, протекающего во вращающейся обжиговой печи.

Сырье
Материал сырья
Скорость подачи сырья
Влажность сырья
Температура сырья
Удельная теплоемкость сырья
Объемная плотность сырья

пероксид урана (UO 4 . 2H 2 O)
300 кг/ч
30 масс. %
16 °C
0,76 кДж/кг К
2,85 г/см³
Продукт
Материал продукта
Скорость подачи продукта
Влажность продукта (влажная масса)
Температура продукта:
на разгрузочной стороне обжиговой печи
на разгрузочной стороне охладителя
Удельная теплоемкость продукта
Объемная плотность материала продукта
Размер частиц

закись-окись урана (U3O8)
174,4 кг/ч
≈ 0 масс.%

650 – 850 °C
60 °C
0,76 кДж/кг К
2,0 г/см³
8 – 20 мкм

Потребляемая мощность печи 206 кВт
Частота вращения барабана
диапазон
нормальная

1-5 об/мин
2,6 об/мин

Материал нагревается в следующих режимах теплопередачи, перечисленных в порядке возрастания их значимости:
1. Теплота излучения.
2. Теплота от прямого контакта с внутренней поверхностью барабана.

Необходимое количество тепла определяется с учетом следующих требований:
1. Тепло для увеличения температуры твердых компонентов.
2. Тепло для нагрева влажного подаваемого материала до температуры испарения.
3. Тепло для выпаривания влажного подаваемого материала.
4. Тепло для увеличения температуры струи воздуха.

Описание процесса работы барабанной печи
Влажный кек (UO 4 . 2H 2 O) помещают на загрузочный конвейер обжиговой печи. Загрузочная сторона барабана оборудована винтовыми пластинами и подающей накладкой, с большой скоростью отводящей материал от данной стороны барабана. Сразу же после схода с винтовых пластин материал под действием силы тяжести стекает вдоль продольной оси барабана. В печной секции обжиговой печи гидратированный пероксид урана (UO 4 . 2H 2 O) подогревается при помощи электронагревательных элементов печи. Электрическая печь разделена на три зоны температурного контроля, что обеспечивает гибкость температурной характеристики. В первых двух зонах пероксид урана (UO 4 . 2H 2 O) поэтапно нагревается до температуры около 680 °C. В третьей зоне температура повышается примерно до 880 °C, причем происходит превращение пероксида урана (UO 4 . 2H 2 O) в закись-окись урана (U3O8).

Полностью прореагировавший желтый урановый кек (U3O8) подается в охлаждающую секцию барабана. Тепло отводится от твердых компонентов, за счет высокой теплопроводности, через стенку барабана обжиговой печи и удаляется с охлаждающей водой, разбрызгиваемой на внешнюю часть барабана. Температура материала уменьшается приблизительно до 60 °C, затем материал подается в разгрузочный трубопровод, через который под действием силы тяжести попадает в транспортную систему. Через разгрузочный трубопровод во вращающуюся обжиговую печь подается мощный поток воздуха, проходящий через барабан навстречу потоку материала, чтобы удалить водяной пар, образовавшийся на нагревательной стадии процесса. Влажный воздух отводится из загрузочного трубопровода при помощи вентиляции.

Компоненты обжиговой барабанной печи

Барабан вращающейся обжиговой печи

Сварные секции барабана имеют швы, располагающиеся попеременно под углами 90° и 180° один к другому и полученные сваркой с полным проплавлением основного металла. Бандажи и зубчатые венцы смонтированы на механически обработанных поверхностях, отделенных от барабана распорными элементами, чтобы учесть различия в радиальном тепловом расширении. Конструкция барабана учитывает любые тепловые и механические нагрузки и поэтому обеспечивает надежную работу. На загрузочной стороне барабана расположены удерживающие материал накладки, преграждающие обратный поток материала в трубопровод и винтовые пластины для подачи материала в нагретые секции.
Открытые секции барабана на загрузочной и разгрузочной стороне оборудованы экранами тепловой защиты персонала.

Бандаж
Барабан имеет два бандажа без сварных швов и стыков из кованой стали. Каждый бандаж имеет цельную прямоугольную секцию и упрочнен для увеличения срока службы.

Опорные колеса
Барабан печи вращается на четырех опорных колесах изготовленных из кованой стали. Опорные колеса упрочнены для увеличения срока службы. Колеса установлены с натягом на высокопрочный вал, установленный между двумя подшипниковыми опорами, имеющими срок службы не менее 60000 часов. Основание колес оснащено нажимными винтами для горизонтального выравнивания и регулировки колес.

Упорные ролики
Установка содержит два упорных ролика, состоящих из двух стальных колес с уплотненными сферическими роликоподшипниками, срок службы которых составляет не менее 60000 часов. Упорные ролики упрочнены для увеличения их срока службы.

Узел привода

Барабан рассчитан на вращение с частотой 1-5 об/мин при мощности 1,5 кВт от электродвигателя с частотой вращения 1425 об/мин, работающего от трехфазной сети переменного тока напряжением 380 В, частотой 50 Гц и выполненного в герметичном исполнении с воздушным охлаждением. Вал электродвигателя напрямую соединен с входным валом главного редуктора через гибкую муфту.

Циклоидный главный редуктор имеет точное понижающее передаточное отношение 71:1 с одной ступенью понижения. Низкоскоростной вал редуктора рассчитан на необходимый момент и предельные нагрузки.

Предотвращение деформации барабана обжиговой печи

Для предотвращения деформации барабана печи, во время сбоев в системе энергоснабжения электродвигателя, предусмотрен дополнительный дизельный двигатель для продолжения вращения барабана. Дизельный двигатель имеет регулируемую частоту вращения (1500-3000 об/мин) и номинальную мощность на выходе 1,5 – 3,8 кВт. Дизельный двигатель запускается вручную или электрическим стартером постоянного тока и напрямую соединен с валом электрического двигателя через муфту.

Барабанная обжиговая печь">

Зубчатый венец
Зубчатый венец выполнен из углеродистой стали. Каждая звездочка имеет 96 закаленных зубьев, смонтирована на барабане и имеет разъемы для упрощения демонтажа.

Приводная шестерня
Изготовлена из углеродистой стали. Каждая шестерня имеет 14 закаленных зубьев и установлена на низкоскоростном валу редуктора.

Приводная цепь
Применяется цепь с наклоном для обеспечения вращения барабана обжиговой печи.

Система обжиговой печи

Кожух печи охватывает барабан и изготовлен из углеродистой стали. Стены и пол кожухов выполнены как одна полная секция. Крыша печи состоит из трех секций, по одной на каждую зону нагрева, и может быть снята с целью технического обслуживания печи или барабана.

Характеристики камеры/нагревательных элементов:

Форсуночный водоохладитель
Форсуночный водоохладитель - уменьшает температуру продукта печи. Корпус охладителя изготовлен из углеродистой стали с внутренними поверхностями, покрытыми эпоксидной смолой (для уменьшения действия коррозии). Корпус оборудован двумя смонтированными в верхней части трубопроводами, имеющими распылительные сопла, впускные и выпускные вращающиеся лабиринтные уплотнения, верхнее сопло для выпуска пара, нижнее дренажное сопло, боковое перепускное сопло, дверцы для доступа и смотровые отверстия. Вода подается в распылительные сопла по трубопроводу, а выпуск осуществляется под действием силы тяжести через нижний дренажный фланец.

Винтовой питатель

Обжиговая печь оборудована загрузочным винтовым конвейером для подачи в барабан кека пероксида урана, представляет собой шнек, расположенный под нулевым углом к горизонтали, подвергшийся чистовой обработке.

Термопары обжиговой печи
Предусмотрены термопары для непрерывного контроля температуры в зонах печи и температур выгружаемого продукта.


Выключатели по нулевой частоте вращения
Обжиговая печь поставляется с двумя выключателями по нулевой частоте вращения, один из которых непрерывно контролирует вращение барабана, другой – вращение загрузочной винтовой линии. Узлы выключателей по частоте вращения смонтированы на концах валов и имеют тип дисковых генераторов импульсов, создающих переменное магнитное поле, регистрируемое измерительным устройством.

В специальных электропечах барабан очень важная деталь. Эти печи так и называются – барабанные ! Прокалка, сушка и другие виды термообработки порошков, гранул и других сыпучих материалов представляют определенные трудности при нагреве в камерных печах. При прокалке сыпучих материалов в поддонах отдельные частички слипаются, неравномерно прогреваются из-за плохой теплопроводности насыпной массы. Качество термообработки плохое, загрузка неудобная и тяжелая, производительность в серийном производстве очень низкая.

Барабан для печи хорош, прежде всего, тем, что он вращается . А это означает, что содержимое непрерывно перемешивается . Отдельные частички равномерно прогреваются, их слипание исключается . После термообработки получается масса, которую можно свободно пересыпать в другие емкости, фасовать или перерабатывать дальше. Определенный заданный наклон барабана позволяет одновременно с пересыпанием обеспечивать продвижение массы вдоль барабана (со стороны загрузки до окна выгрузки). Высокая производительность обеспечивается непрерывным процессом, т.е. загрузка, термообработка и выгрузка сыпучих материалов идут непрерывно. Барабан может иметь внутри продольные ребра, которые улучшают перемешивание. Может оснащаться специальным шнеком, который гарантирует заданную скорость перемещения массы. Если барабан оснащен шнеком, то, меняя направление вращения барабана, можно изменять направление движения насыпной массы, можно даже подавать ее по наклонному барабану вверх, что очень удобно совмещается, например, с транспортировкой массы в высокий бункер.

СУШКА , как известно, дело простое. Это удаление воды с поверхности или удаление воды, содержащейся внутри материалов. С повышением температуры скорость удаления воды возрастает. Поэтому для интенсивной сушки необходим нагрев до температуры выше температуры кипения с отводом паров в атмосферу. Для удаления связанной влаги, т.е. когда вода входит в состав сложных молекулярных соединений, необходим еще более высокотемпературный нагрев.

Для качественной сушки, кроме равномерного нагрева, необходимо также интенсивное перемешивание сыпучих материалов, иначе частички слипаются.

Удачным решением высокопроизводительной сушки является барабанная печь. С одной стороны непрерывно загружается влажное сырье, с другой непрерывно выходит просушенный готовый к дальнейшему использованию материал. Барабан непрерывно вращается, обеспечивая с одной стороны перемешивание сырья, а с другой - непрерывное продвижение вдоль трубы. Такое перемещение обеспечивает равномерный и постепенный нагрев сырья по мере его продвижения по барабану.

Для загрузки влажного сырья применяется специальный рукавный бункер с виброзагрузчиком, обеспечивающий принудительную подачу сырого порошка в барабан. Высыпаться из барабана просушенный порошок может без дополнительных устройств.

Регулироваться производительность барабанной печи может углом наклона барабана и рабочей температурой. С увеличением угла наклона скорость продвижения сыпучего материала увеличивается. С повышением температуры скорость сушки возрастает. Важно только подобрать их оптимальную величину для каждого типа сырья.

Еще больше увеличивает производительность печи продувка барабана горячим воздухом , интенсивно удаляющим пары воды в атмосферу.

ЗАКАЛКА сталей является известной операцией, которая заключается в нагреве деталей до определенной температуры, а затем их резким охлаждением, чаще всего в воде или в другой жидкости. Детали для термообработки укладываются в рабочей камере электропечи на поддон из жаропрочной стали. Для выгрузки деталей открывают дверь, клещами достают детали и погружают их в жидкость. А если деталей – тысячи, как, например, дюбели, детали подшипников, стальная дробь или другие массовые изделия?

Тогда необходимо использовать барабанную электропечь. С одной стороны, можно непрерывно загружать детали в барабанную электропечь, после прогрева до требуемой температуры, непрерывно сбрасывать их в закалочную жидкость. Производительность закалки высочайшая! Процесс легко полностью автоматизировать.

После закалки, с целью уменьшения внутренних напряжений, производится ОТПУСК закаленных деталей. Для отпуска стальные детали нагреваются до температуры ниже фазовых превращений. После выдержки при этой температуре детали медленно охлаждаются с заданной скоростью вместе с печью или на воздухе. Если процесс отпуска проводить в другой барабанной электропечи, то весь цикл термообработки массовых деталей можно выстроить в линию и полностью автоматизировать.

Коррозия. Ей, к сожалению, подвержены изделия из чугуна и стали. ЗАЩИТИТЬ изделия от КОРРОЗИИ сегодня можно очень эффективно, если использовать современные технологии термодиффузионных покрытий.

Для термодиффузионного цинкования используется барабанная электропечь, в которой антикоррозионное покрытие формируется в герметично закрытом барабане. Диффузионное насыщение цинком поверхности металлических изделий ведется в порошковой среде. При нагреве деталей в порошке идет диффузия молекул цинка из газовой среды в поверхностный слой обрабатываемых деталей, создавая тем самым антикоррозионную защиту. Технология не требует очистных сооружений, что делает ее очень компактной.

Процесс термодиффузионного цинкования позволяет получать равномерно распределенное покрытие любой заранее заданной толщины от 15 до 120 мкм. Полученное покрытие имеет повышенную твердость и износостойкость. Покрытие в точности сохраняет рельеф обрабатываемой поверхности, что очень важно для деталей, имеющих резьбу, пазы, шлицы и т.д.

Внешняя простота барабанной печи очень обманчива. Тепловой расчет невероятно сложен: пересыпающаяся масса имеет разную плотность, теплоемкость и теплопроводность. Нестационарные тепловые потоки трудно поддаются моделированию, а значит, и тепловому расчету. Динамические характеристики печи меняются с изменением температуры и теплофизических свойств насыпной массы, что очень усложняет настройку регуляторов температуры. Даже простое измерение температуры во вращающемся барабане представляет серьезную проблему!

Но если эти проблемы решены - барабанная электропечь способна обеспечить очень высокую производительность термообработки массовых деталей, окупив тем самым все издержки по отладке любого, даже очень сложного техпроцесса.

Изобретение относится к цветной металлургии, а именно к плавильным агрегатам для переработки (переплава) отходов цветных металлов, в частности для переплава вторичных алюминиевых ломов и отходов алюминиевых сплавов в слитки и чушки. Печь может применяться для рафинирования, получения сплавов, усреднения химического состава лома.

Известно устройство вращаюшейся металлургической плавильной печи для переплавки металла (патент РФ №2009423 C1), являющееся аналогом изобретения.

Также как и предлагаемое изобретение, аналог содержит цилиндрический корпус, загрузочное отверстие, горелку, летку для выпуска расплава металла и летку для слива шлака.

1. Сложность загрузки, которая вызвана необходимостью использования специального разливочного крана, и сложность осуществления процесса разлива металла из печи на разливочную машину, который требует наличия промежуточного разливочного ковша.

2. Отсутствие системы пылегазоочистки, которая бы уменьшала вредное влияние при плавке в печи на внешнюю среду.

Известно также устройство вращающейся металлургической плавильной печи для переработки отходов цветных металлов (патент РФ №2058623), являющееся аналогом изобретения.

Описанная в патенте печь содержит, как и предлагаемая, цилиндрический корпус, горелочное устройство, загрузочное отверстие, летку для слива расплава металла.

Недостатками этой печи являются:

1. Расположение летки для выпуска расплава металла и летки для слива шлака с торца печи усложняют процесс подачи металла на разливочную машину, так как при этом необходимо наличие промежуточного разливочного ковша.

2. Расположение загрузочного отверстия на цилиндрической части печи усложняет ее конструкцию, так как необходимо предусмотреть специальное уплотнительное устройство в крышке загрузочного отверстия, потому что печь вращается.

3. Отсутствие системы пылегазоочистки, которая бы уменьшала вредное влияние на окружающую среду при плавке.

4. Отсутствует теплоизоляция, которая бы уменьшала потери тепла в окружающую среду.

Ввиду наличия указанных выше недостатков, печь не может решить поставленную техническую задачу.

Наиболее близким аналогом (прототипом) по отношению к заявляемой плавильной печи является вращающаяся плавильная печь для переработки отходов цветных металлов (патент РФ №2171437), содержащая, как и заявляемая печь, цилиндрический корпус, горелочное устройство, загрузочное отверстие, летку для слива расплава металла. Прототип заявляемой печи имеет следующие недостатки:

1. Печь не имеет быстросменного легочного кирпича, который позволяет производить быстрый ремонт в случае его износа.

2. Отсутствие системы пылегазоочистки, которая бы уменьшала вредное влияние на окружающую среду.

3. Отсутствует теплоизоляция, которая бы уменьшала потери тепла в окружающую среду.

Ввиду наличия указанных выше недостатков, печь не может решить поставленную техническую задачу.

Задачей изобретения является создание вращающейся барабанной плавильной печи простой конструкции для переработки (переплава) отходов цветных металлов, в частности, для переработки алюминиевых ломов, позволяющей снизить выбросы вредных газов в атмосферу, уменьшить потери тепла в окружающую среду, а также увеличить срок ее эксплуатации. Точнее сказать, создание вращающейся барабанной плавильной печи, которая в процессе плавки вращается относительно горизонтальной оси в обе стороны на угол 105° с помощью электрического привода.

Технический результат - разработанная печь является простой по конструкции, имеющей большой срок эксплуатации, позволяющей: использовать алюминиевую стружку, алюминиевый лом, снизить потери тепла в окружающею среду за счет теплоизоляции кожуха печи и торцевых стенок, вести процесс переплава на искусственной и естественной тяге с системой пылегазоочистки, что делает его экологически чистым, кроме того, совершать в процессе плавки вращательные движения относительно горизонтальной оси в обе стороны на угол 105° с помощью электрического привода.

Указанный технический результат достигается за счет того, что во вращающуюся барабанную плавильную печь для переработки отходов цветных металлов, содержащую цилиндрический корпус, горелочное устройство, загрузочное отверстие (окно), летку для слива расплава металла согласно предлагаемому изобретению, введен теплоизоляционный слой, состоящий из трех листов гибкого теплоизоляционного стекловолокнистого муллитокремнеземистого картона и слоя шамотного легковеса, на который набивается слой футеровки из муллитовой безусадочной набивной массы, в качестве горелочного устройства используется газовая четырехсмесительная инжекционная прямоугольная горелка, в которой в нижнем ряду размещены два смесителя с перфорированной полусферой, дающие пламя длиной 0,7 метра, а верхнем ряду находятся два смесителей с двенадцатью ребрами в конце смесителя на внутренней стороне, которые при горении газовоздушной смеси имеют пламя длиной 2,5 метра, при этом введен механизм поворота горелочного щита, кроме того, печь выполнена с возможностью работы на естественной и искусственной тяге с системой пылегазоочистки для достижения экологически чистого процесса, в которую входят: камера смешения, дымосос, агрегат пылегазоочистки и картриджный фильтр, более того, печь в процессе плавки с помощью приводного механизма совершает вращательные движения относительно горизонтальной оси в обе стороны на угол 105°.

Введенный теплоизоляционный слой, состоящий из трех листов гибкого теплоизоляционного стекловолокнистого муллитокремнеземистого картона и слоя шамотного легковеса позволяет снизить потери тепла в окружающую среду, а также позволяет дополнительно сохранять температуру металла в барабанной качающейся плавильной печи для переработки отходов цветных металлов (в дальнейшем печи). Срок службы печи увеличивается из-за использования муллитокорундовой набивной массы, которая имеет высокую огнеупорность и стойкость.

Более того, предлагаемая газовая четырехсмесительная инжекционная прямоугольной формы горелка содержит стабилизирующий пламя туннель, огнеупорную набивную массу, четыре смесителя, объединенных общей сварной газораспределительной камерой, в каждом смесителе просверлено четыре сопла под углом 26 градусов к их осям, причем нижние смесители представляют собой в верхней части трубу диаметром 62×10 мм и длиной 300 мм, содержат в нижней части устройства для окончательного перемешивания газовоздушной смеси, состоящее из рассекателя, выполненного в виде конуса, диска, втулки и перфорированной полусферы, а верхние смесители представляют собой трубу диаметром 90×10 мм, при этом смесители, детали к смесителям и литой стабилизирующий пламя туннель, надетый на объединяющую смесители газораспределительную камеру и на кожух горелки, изготовлены из жаростойкого чугуна ЧЮХШ. Стабилизирующий пламя туннель имеет наклонную перегородку, которая позволяет получить от нижних смесителей с перфорированной полусферой пламя, плавящее шихту, находящуюся ближе к горелке, а от двух верхних смесителей пламя, плавящее шихту, находящуюся в середине печи и ближе к дальней от горелке торцевой стенке. Жаростойкий чугун, используемый в качестве материала для изготовления смесителей, деталей к смесителям и литого стабилизирующего пламя туннеля, позволяет увеличить срок службы горелки и, естественно, печи. Номинальная тепловая мощность предлагаемой горелки 1,0 МВт.

Вместе с тем в конструкцию печи введен механизм поворота горелочного щита, состоящий из: колонны, внутри которой размещен вал, с возможностью поворота на угол 100° от гидроцилиндра, при этом на валу жестко закреплен кронштейн с приваренным к нему патрубком, по которому подается из газопровода газ в газовую четырехсмесительную инжекционную горелку, кроме того, на конце кронштейна приварен горелочный щит с горелкой. Введенный в конструкцию печи механизм поворота горелочного щита позволяет улучшить условия труда обслуживающему печь персоналу. Очень важным фактом является то, что механизм поворота горелочного щита позволяет быстро без разборки печи заменить износившуюся горелку, кроме того, через окно, в которое вставляется горелка производить легирование, рафинирование жидкого сплава, а также производить обработку флюсами. Кроме того, для увеличения производительности печи, увеличения объема выпуска металла можно производить загрузку шихты в печь через окно для горелки (при отведенной горелке) с помощью виброзагрузочной машины.

При этом вращающаяся барабанная плавильная печь для переработки отходов цветных металлов выполнена с возможностью работы на естественной и искусственной тяге с системой пылегазоочистки, причем в агрегате пылегазоочистки производится очистка от вредных веществ, содержащихся в дымовых газах, а также от крупной и средней пыли, в картриджном фильтре от мелкой пыли. Картриджный фильтр имеет следующие технические характеристики; производительность по очищаемому газу 11000 м 3 /час; количество фильтровальных элементов 11 штук; количество клапанов продувки 6 штук; толщина теплоизоляции 30 мм; степень очистки - 96%; габариты 2800×2000×3400 мм. Работа на естественной тяге производится в случае ремонта отдельных агрегатов системы пылегазоочистки.

Введение в конструкцию печи перечисленных выше устройств, материалов и т.п. обеспечивает решение поставленной задачи.

Следует отметить, что загружать лом (допустим алюминиевый) в печь для плавки необходимо измельченным на измельчителе (шредере) и прошедшим магнитную сепарацию (для отделения чугуна и стали в виде втулок, вкладышей, толкателей, шпилек, пальцев и т.д., которые находятся в моторном ломе). В конструкторской части заявки на изобретение изображено:

на фиг.1 - вид печи сбоку и со стороны горелки;

на фиг.2 - футеровка печи;

на фиг.3 - газовая инжекционная горелка;

на фиг.4 - разрез А-А газовой инжекционной горелки;

на фиг.5 - агрегат пылегазоочистки;

на фиг.6 - картриджный фильтр;

на фиг.7 - вид печи в плане с разливочным и пылегазоочистным оборудованием.

Предлагаемая вращающаяся барабанная плавильная печь, далее печь, для переработки отходов цветных металлов, в основном алюминиевых ломов состоит из цилиндрического кожуха 1, сваренного из стального листа толщиной 8 мм. Торцовые стенки 2 кожуха 1 отъемные и крепятся двадцатью четырьмя болтами 3, двадцатью четырьмя гайками 4 и двадцатью четырьмя пружинными шайбами 5 фиг.1. В цилиндрической части кожуха 1 выполнено загрузочное окно 6, через которое производится загрузка шихты виброзагрузочной машиной 7 фиг.1, 7. Выпуск расплавленного металла производится через летку 8, расположенную в нижней торцевой стенке 2 печи. Летка 8 выполнена в быстросменном леточном кирпиче (не показан), который позволяет производить быстрый ремонт в случае его износа. Ремонт производится в течение 15-20 минут, при этом футеровка печи не разбирается.

К кожуху 1 печи крепятся два литых опорных кольца 9. Каждое опорное кольцо 9 имеет гладкую опорную поверхность. Кожух 1 печи в горизонтальном положении свободно лежит на четырех направляющих роликах 10. Направляющие ролики 10 имеют ось 11 и закреплены в четырех литых кронштейнах 12, которые смонтированы на опорах 13 литых кронштейнов 12, крепящихся к раме 14 печи. На одной оси 11 рядом с направляющим роликом 10 закреплено зубчатое колесо 15, которое входит в зацепление с зубчатым колесом 16 привода. Рама 14 печи имеет внизу стальные опоры 17, на которых и стоит печь на бетонном полу 18 литейного цеха. Стальные опоры 17 закреплены в бетонном полу 18 фундаментными болтами (не показаны). Привод плавильной печи электрический и включает в себя: зубчатое колесо 16 привода, муфту 19, червячный редуктор 20 и электродвигатель 21. При загрузке плавильной печи шихтой рабочее окно 6 находится сбоку, во время плавки - вверху. Печь в процессе плавки с помощью электрического привода совершает вращательные движения относительно горизонтальной оси в обе стороны на угол 105°. При этом улучшается теплоотдача от футеровки металлу, кроме того, ускоряются процессы модифицирования, обработки флюсами и перемешивания металла в печи. Кроме того, для увеличения производительности печи, увеличения объема выпуска металла можно производить загрузку шихты в печь через окно для горелки (при отведенной горелке) с помощью второй виброзагрузочной машины 7.

Печь в торцевой стенке 2 кожуха 1 имеет горелочное устройство. В качестве горелочного устройства используется газовая четырехсмесительная инжекционная прямоугольная горелка 22, далее горелка, в которой в нижнем ряду размещены два смесителя с перфорированной полусферой, дающие пламя длиной 0,7 метра, а в верхнем ряду находятся два смесителя с двенадцатью ребрами в конце каждого смесителя на внутренней стороне, которые при горении газовоздушной смеси имеют пламя длиной 2,5 метра. Более того, предлагаемая горелка содержит стабилизирующий пламя туннель 23, огнеупорную набивную массу 24, четыре смесителя 25, объединенных общей сварной газораспределительной камерой 26, в каждом смесителе 25 просверлено четыре сопла 27 под углом 26 градусов к их осям, причем нижние смесители 25 представляют собой в верхней части трубу 28 диаметром 62×10 мм и длиной 300 мм фиг.3, 4. Каждый нижний смеситель 25 содержит в нижней части устройство для окончательного перемешивания газовоздушной смеси, состоящее из рассекателя 29, выполненного в виде конуса, диска 30, втулки 31 и перфорированной полусферы 32, а верхние смесители 25 представляют собой трубу диаметром 90×10 мм. Рассекатель 29 имеет периферийные отверстия под углом 28 градусов к оси смесителя 25 для прохождения по ним газовоздушной смеси из камеры предварительного смешивания 33, кроме того, диск 30 имеет в центре отверстие, перфорированная полусфера 32 имеет ободок для фиксации, отверстия диаметром 2,5 мм в ней просверлены в разные стороны в шахматном порядке. К торцу газораспределительной камеры 26 приварен сварной стальной кожух 34, который служит для набивки горелки огнеупорной набивной массой 24. Газ в газораспределительную камеру 26 подается по штуцеру 35. Стабилизирующий пламя туннель 23 имеет наклонную перегородку 36, которая служит как направляющая и позволяет получить от нижних смесителей 25 с перфорированной полусферой 32 пламя, плавящее шихту, находящуюся ближе к горелке, а от двух верхних смесителей пламя, плавящее шихту, находящуюся в середине печи и ближе к дальней от горелке 22 торцевой стенке 2. При этом смесители 25, детали к смесителям и литой стабилизирующий пламя туннель 23, надетый на объединяющую смесители газораспределительную камеру 26 и на стальной кожух 34 горелки 22, изготовлены из жаростойкого чугуна ЧЮХШ. Жаростойкий чугун позволяет увеличить срок службы горелки и, естественно, печи.

В конструкцию печи введен механизм поворота горелочного щита 37, который представляет собой круглую стальную пластину диаметром 420 мм и толщиной 8 мм фиг.1. В горелочный щит 37 вварена по центру горелка 22. К фундаменту четырьмя анкерными болтами (не показаны) крепится колонна 38 механизма поворота горелочного щита 37. В колонне 38 поворачивается на угол 100° от гидроцилиндра 39 вал 40 с закрепленным на нем кронштейном 41 и приваренным к нему патрубком 42, по которому подается из газопровода 43 газ в горелку 22. Гидроцилиндр 39 жестко закреплен на опоре 44, а его шток 45 шарнирно соединен с тягой 46, которая приварена к кронштейну 41. К кронштейну 41 приварен горелочный щит 37. Газ по трубе 47 подается в горелку 22, где сгорает, а дымовые газы, образующиеся в процессе плавки, удаляются через зонд 48 в систему пылегазоочистки. Существенно отметить, что на виде сбоку (на фронтальном) механизм поворота горелочного щита 37 не показан фиг.1. Введенный в конструкцию печи механизм поворота горелочного щита позволяет улучшить условия труда обслуживающему печь персоналу. Очень важным фактом является то, что механизм поворота горелочного щита 37 позволяет быстро без разборки печи заменить износившуюся горелку, кроме того, через окно, в которое вставляется горелка производить легирование, рафинирование жидкого сплава, а также производить обработку флюсами.

Печь футеруется шамотным легковесным кирпичом марки ШЛ 0,9 клин ребровый изделие №44, 45.

В качестве связующего вещества применяется огнеупорный раствор, состоящий из огнеупорной глины (20%), шамотного порошка (75%), жидкого стекла (3%) и фоскона (алюмохромофосфатная смесь, 2%) фиг.2. Толщина швов 1-2 мм, термокомпенсационные швы не выкладываются. Для футеровки кожух 1 снимается с катков 10, ставится в вертикальное положение, отвинчивается одна торцовая стенка 2. Сначала на кожух 1 укладывается теплоизоляционный слой, состоящий из трех листов гибкого теплоизоляционного стекловолокнистого муллитокремнеземистого картона 49, далее на него футеруется слой шамотного легковеса 50. Введенный теплоизоляционный слой, состоящий из трех листов гибкого теплоизоляционного стекловолокнистого муллитокремнеземистого картона 49 и слоя шамотного легковеса 50, позволяет снизить потери тепла в окружающую среду, а также позволяет дополнительно сохранять температуру металла в печи. На слой шамотного легковеса 50 набивается по шаблону слой футеровки из муллитовой безусадочной набивной массы 51. Теплоизоляционный слой, состоящий из трех листов гибкого теплоизоляционного стекловолокнистого муллитокремнеземистого картона 49, укладывается на огнеупорный состав, состоящий из огнеупорной глины 30%, шамотного порошка 62%, жидкого стекла 5%, фоскона. Стойкость футеровки из муллитовой безусадочной набивной массы 51 сравнительно велика - более 690 плавок. Срок службы печи увеличивается из-за использования муллитовой безусадочной набивной массы, которая имеет высокую огнеупорность и стойкость.

Печь выполнена с возможностью работы на естественной и искусственной тяге с системой пылегазоочистки для достижения экологически чистого процесса. Система пылегазоочистки двухступенчатая. В первую ступень входят: камера смешения 52, дымосос 53, агрегат пылегазоочистки 54. Во вторую ступень - картриджный фильтр 55. Работа на естественной тяге производится в случае ремонта отдельных агрегатов системы пылегазоочистки. Для разбавления дымовых газов воздухом цеха с целью снижения температуры до 150-170°C перед подачей их в дымосос 53 устанавливается камера смешения 52, которая имеет два шибера: шибер 56 регулирует тягу (разряжение в печи), шибер 57 регулирует подачу цехового воздуха. В системе пылегазоочистки установлен дымосос ДН-9у поз.53, который подает разбавленные воздухом дымовые газы в агрегат пылегазоочистки 54. Агрегат пылегазоочистки 54 представляет собой сборный стальной цилиндрической формы корпус 58, в нижней части которого имеется поворотная загрузочная решетка 59 с отверстиями. Выше загрузочной решетки 59 расположен загрузочный патрубок 60. В верхней части цилиндрического корпуса 58 размещены вращающиеся рукавные фильтры, которые улавливают пылевидные частицы из дымовых газов (не показаны). Вверху агрегата пылегазоочистки 54 размещен привод вращения рукавных фильтров, состоящий из электродвигателя 61, червячного редуктора 62 и тарелки 63.

В верхней части цилиндрического корпуса 58 на раме 64 размещена воздуходувка 65 с электродвигателем, обслуживающая площадка 66 опирается на четыре опоры 67 и имеет слева лестницу 68. Отработанный адсорбент и пыль собираются в конусной части 69 цилиндрического корпуса 58. Очищаемые газы из печи подаются в агрегат пылегазоочистки 54 через патрубок 70. Принцип работы агрегата пылегазоочистки 54 заключается в следующем: из печи дымовые газы нагнетаются дымососом ДН-9у поз.53 в патрубок 70 и под давлением проходят слой адсорбента, при этом образуется «кипящий слой», в результате чего вредные вещества, находящиеся в дымовых газах, адсорбируются гашеной известью, селикагелем и активированным углем. После очистки дымовых газов от вредных веществ они очищаются от пыли во вращающихся рукавных фильтрах, находящихся в верхней части цилиндрического корпуса 58. Очищенные газы воздуходувкой 65 нагнетаются в картриджный фильтр 55. Отработанный адсорбент выгружается через нижнюю горловину 71 цилиндрического корпуса в металлическую емкость и увозится в отвал. Для удаления пыли на вращающихся рукавных фильтрах используется сжатый воздух давлением 0,6 МПа, который подается от заводской компрессорной станции. Основные технические характеристики агрегата пылегазоочистки:

- производительность по очищаемому газу 6000 м 3 /час;
- площадь поверхности фильтрования 11,7 м 2 ;
- количество рукавных фильтров 7 шт;
- толщина слоя адсорбента 0,35 м;
- степень очистки по фтористому водороду 62%;
- степень очистки по окиси меди 84%;
- степень очистки по окиси углерода 86%;
- степень очистки по окиси азота 84%;
- степень очистки по окиси алюминия 82%;
- степень очистки по пыли 90%;
- температура очищаемого газа от 20 до 100°C;
- температура наружной поверхности аппарата от 45 до 60°C;
- уровень звука не более 80 ДБА.

Вторая ступень очистки от пыли включает в себя картриджный фильтр 55. Картриджный фильтр 55 сварен из листовой стали, имеет корпус 72, внутри которого размещены 11 картриджи (не показаны) для улавливания мелкой пыли. К корпусу 72 картриджного фильтра 55 в нижней части крепится бункер 73 для сбора мелкой пыли, а для удаления мелкой пыли из бункера 73 предусмотрен шнековый транспортер 74. В бункере 73 имеются два лючка 75. Корпус 72 картриджного фильтра 55 с бункером 73 опирается на четыре опоры 76, с боковой стороны корпуса 72 расположен входной патрубок 77, а с торцевой стороны корпуса 72 приварен выходной патрубок 78. Пыль с картриджей удаляется импульсом сжатого воздуха давлением 6 ати, подаваемого от компрессорной станции по трубе в шесть клапанов продувки 79. Для проведения обслуживания и ремонта картриджного фильтра предусмотрена нижняя 80 и верхняя 81 обслуживающие площадки и лестница 82. Картриджный фильтр 55 имеет следующие технические характеристики; производительность по очищаемому газу 11000 м 3 /час; количество фильтровальных элементов 11 штук; количество клапанов продувки 6 штук; толщина теплоизоляции 30 мм; габариты 2800×2000×3400 мм. Степень очистки - 96%.

Принцип работы картриджного фильтра 55 основан на улавливании пыли картриджами при прохождении через них дымовых газов. При осаждении пыли поры в картриджах постепенно уменьшаются. Основная масса пыли не проникает в картриджи, а оседает на них.

По мере увеличения толщины слоя пыли на поверхности картриджей возрастает сопротивление движению дымовых газов и снижается пропускная способность картриджного фильтра 55, во избежание чего предусмотрена регенерация запыленных картриджей импульсом сжатого воздуха. Очищенные дымовые газы после прохождения картриджного фильтра 55 поступают в дымовую трубу 83. Существенно отметить, что печь может работать как на искусственной тяге, так и на естественной тяге. За зонтом 48 газоход 84 раздваивается: одна ветвь 85 (работа на естественной тяге) имеет два шибера 86, 87 и идет на дымовую трубу 83, другая - на камеру смешения 52, дымосос 53, агрегат пылегазоочистки 54 и, далее, на дымовую трубу 83 фиг.7. Ветвь боровка, идущая к дымососу, имеет перед дымовой трубой 83 шибер 88. Регулировка шиберами производится не так часто, поэтому для их обслуживания используется приставная лестница. Выплавленный металл разливается из печи по поворотному желобу 89 в изложницы, закрепленные на разливочной карусели 90. Печь работает на естественной тяге следующим образом.

Печь после футеровки прокаливается. Измельченная на шредере шихта проходит магнитную сепарацию и подается в виброзагрузочную машину 7, печь оператором наклоняется в сторону виброзагрузочной машины 7, при этом рабочее окно 6 печи должно встать напротив загрузочного лотка виброзагрузочной машины 7. Оператор включает привод перемещения виброзагрузочной машины 7 вперед, виброзагрузочная машина 7 перемещается по рельсовому пути 91 к печи и ее лоток входит в рабочее окно 6 печи. Включается механизм вибрации виброзагрузочной машины 7 и шихта по лотку падает в предварительно прокаленную печь. После загрузки шихты виброзагрузочная машина 7 подается по рельсам 91 назад, а печь поворачивается в исходное положение. Для увеличения производительности печи, увеличения объема выпуска металла можно производить загрузку шихты в печь через окно для горелки (при отведенной горелке) с помощью второй виброзагрузочной машины 7 одновременно. При этом шиберы 86 и 87 на газоходе 85 открыты, а шиберы 56, 57, 88 закрыты. Пламя горелки 22 нагревает лом в печи до температуры плавления. Металл плавится и накапливается в печи. После полного расплавления загруженного в печь лома, горелка 22 плавильщиком металла отводится, забрасывается в печь через окно, где находилась горелка, флюс, после обработки флюсом жидкого металла и подтверждения лабораторией спектрального анализа марки получаемого сплава, открывают летку 8 и жидкий металл течет по желобу 89, заполняя изложницы, находящиеся на разливочной карусели 90. После разливки жидкого металла, печь поворачивают и по носку рабочего окна 6 шлак скачивают в шлаковню 92.

При работе печи на искусственной тяге, когда шиберы 86, 87 на газоходе 85 закрыты, а шиберы 56, 57 и 88 открыты, продукты горения, пройдя камеру смешения 52, разбавляются в ней воздухом цеха, далее дымососом 53 подаются в агрегат пылегазоочистки. Дымовые газы проходят в них очистку от вредных соединений в «кипящем слое», а во вращающихся рукавных фильтрах происходит их очистка от крупной и средней пыли. Далее воздуходувка 65 подает их в корпус 72 картриджного фильтра 55, в котором они очищаются от мелкой пыли и удаляются в дымовую трубу 83.

Работа печи на естественной тяге осуществляется в случае, если позволяют размеры санитарно-защитной зоны предприятия, а также при проведении ремонтно-профилактических работ системы пылегазоочистки.

Итак, предлагаемая печь является простой по конструкции, используется для переработки (переплава) отходов цветных металлов, в частности для переработки алюминиевых ломов, введенные в конструкцию элементы, устройства позволяют снизить выбросы вредных газов в атмосферу, уменьшить потери тепла в окружающую среду, а также увеличить срок ее эксплуатации.

1. Вращающаяся барабанная плавильная печь для переработки отходов цветных металлов, содержащая цилиндрический корпус, горелочное устройство, загрузочное окно, летку для слива расплава металла, отличающаяся тем, что она снабжена горелочным щитом с механизмом его поворота, приводным механизмом для обеспечения вращательного движения печи относительно горизонтальной оси в обе стороны на угол 105° и теплоизоляционным слоем, состоящим из трех листов гибкого теплоизоляционного стекловолокнистого муллитокремнеземистого картона и слоя шамотного легковеса, на который набит слой футеровки из муллитовой безусадочной набивной массы, при этом горелочное устройства выполнено в виде газовой четырехсмесительной инжекционной прямоугольной горелки, в которой в нижнем ряду размещены два смесителя с перфорированной полусферой, обеспечивающие пламя длиной 0,7 метра, а в верхнем ряду находятся два смесителя с двенадцатью ребрами в конце смесителя на внутренней стороне, обеспечивающие пламя длиной 2,5 метра, при этом печь выполнена с возможностью работы на естественной и искусственной тяге с системой пылегазоочистки, включающей камеру смешения, дымосос, агрегат пылегазоочистки и картриджный фильтр.

2. Печь по п.1, отличающаяся тем, что механизм поворота горелочного щита содержит колонну, внутри которой размещен вал, с возможностью поворота на угол 100° от гидроцилиндра, жестко закрепленный на валу кронштейн с приваренным к нему патрубком для подачи из газопровода газа в газовую четырехсмесительную инжекционную горелку и приваренный на конце кронштейна горелочный щит, при этом механизм поворота горелочного щита выполнен с возможностью загрузки шихты в печь через окно для горелки при отведенной горелке посредством виброзагрузочной машины.

3. Печь по п.1, отличающаяся тем, что газовая четырехсмесительная инжекционная прямоугольной формы горелка содержит стабилизирующий пламя туннель, огнеупорную набивную массу, четыре смесителя, объединенные общей сварной газораспределительной камерой, в каждом смесителе просверлено четыре сопла под углом 26 градусов к их осям, причем нижние смесители представляют собой в верхней части трубу диаметром 62×10 мм и длиной 300 мм, а в нижней части содержат устройство для окончательного перемешивания газовоздушной смеси, состоящее из рассекателя, выполненного в виде конуса, диска, втулки и перфорированной полусферы, а верхние смесители представляют собой трубу диаметром 90×10 мм, при этом смесители, детали к смесителям и литой стабилизирующий пламя туннель, надетый на объединяющую смесители газораспределительную камеру и на кожух горелки, изготовлены из жаростойкого чугуна ЧЮХШ.

4. Печь по п.1, отличающаяся тем, что картриджный фильтр выполнен с возможностью обеспечения производительности по очищаемому газу 11000 м 3 /час, имеет 11 фильтровальных элементов, 6 клапанов продувки, толщину теплоизоляции 30 мм, степень очистки - 96% и габариты 2800×2000×3400 мм.

Похожие патенты:

Изобретение относится к области промышленной теплоэнергетики и может быть использовано при получении активированного угля. Способ активирования фракционированных по размеру угольных частиц осуществляется их непрерывной пересыпкой и взаимодействием с противоточным факелом в наклоненном относительно горизонтальной плоскости реакторе с нагревом, выделением и выжиганием летучих веществ, образованием и выводом из реактора смеси летучих веществ и продуктов сгорания, последующими пересыпкой и охлаждением противоточным потоком продуктов сгорания в наклоненном относительно горизонтальной плоскости охладителе и дожиганием летучих веществ и сбросом в атмосферу продуктов сгорания.

Изобретение относится к наклонному вращающемуся реактору для сжигания твердых бытовых и промышленных отходов и сушки сыпучих материалов. Реактор содержит установленный на неподвижной опоре с возможностью вращения цилиндрический корпус, в нижней части которого выполнено не менее двух отверстий для разгрузки материала с заслонками, выполненными с возможностью раскрытия в своем нижнем положении и закрытия в своем верхнем положении относительно вертикали под действием собственного веса при вращении реактора.

Изобретение относится к печам для плавки металлосодержащих отходов и нанесения металлических покрытий термодиффузионным методом и может быть использовано для извлечения цветных металлов из смесей и оксидов и обработки поверхностей деталей.

Изобретение относится к технологии обжига строительных материалов и может быть использовано при производстве керамзита. Способ обжига керамзита во вращающейся печи включает задание требуемых значений температуры керамзита в точке, соответствующей концу зоны нагрева, и температуры в точке, соответствующей середине зоны вспучивания, определение температуры в точке, соответствующей концу зоны нагрева, и температуры в точке, соответствующей середине зоны вспучивания, определение разности между требуемым и имеющимся значением температуры керамзита в точке, соответствующей концу зоны нагрева, формирование в функции величины разности этих температур управляющего воздействия на привод ленточного питателя, определение разности между требуемым и имеющимся значением температуры керамзита в точке, соответствующей середине зоны вспучивания, формирование в функции величины разности этих температур управляющего воздействия на горелку печи, дополнительно задают требуемое значение температуры керамзита в точке, соответствующей концу зоны сушки, определяют температуру в точке, соответствующей концу зоны сушки, определяют разность между требуемым и имеющимся значением температуры керамзита в точке, соответствующей концу зоны сушки, формируют в функции величины разности этих температур управляющее воздействие на привод вращения печи. Изобретение также относится к устройству для обжига керамзита. Технический результат - повышение качества керамзита, в том числе и его прочности, сокращение количества технологического отхода при производстве керамзита, стабилизация процесса обжига. 2 н.п. ф-лы, 2 ил.

Изобретение относится к конструкции летки доменной печи для производства чугуна. Устройство содержит жаропрочные кирпичи, расположенные вдоль внутренней стороны кожуха печи, цилиндрический корпус, проходящий через кожух печи и обращенный к жаропрочным кирпичам, и кольцевой уплотнительный узел, расположенный на конце корпуса рядом с жаропрочными кирпичами и содержащий уплотнитель корпуса. При этом уплотнитель корпуса расположен с обеспечением воздухонепроницаемого уплотнения корпуса по его периферии, а уплотнитель кирпичей - с обеспечением воздухонепроницаемого уплотнения кирпичей по всей периферии между жаропрочными кирпичами и уплотнительным узлом. Изобретение направлено на исключение утечки газа при выпуске жидкого чугуна. 5 з.п. ф-лы, 8 ил.

Изобретение относится к роторной наклонной печи для переработки алюминиевых ломов. Печь содержит футерованный корпус с опорным кольцом, которое оперто на два ролика, горелочный щит с закрепленной на нем газовой инжекционной горелкой с одиннадцатью смесителями, поворотную футерованную чашу с двумя футерованными желобам, привод вращения печи и привод подвода-отвода горелочного щита. Футерованный корпус имеет теплоизоляционный слой, состоящий из теплоизоляционного стекловолокнистого муллитокремнеземистого фетра и слоя шамотного легковеса, на который набит слой футеровки из муллитокремнеземистой набивной массы с корочкой гарнисажа. Горелка содержит устройство регулирования расхода воздуха, установлена с наклоном 20° к оси футерованного корпуса с возможностью подачи газа к горелке по трубе, приваренной к кронштейну, закрепленному на поворотной колонне. Печь имеет смонтированную на тележке поворотную футерованную чашу с двумя футерованными желобам, причем один из двух футерованных желобов имеет снизу прикрепленный к нему желоб, который может перемещаться снизу верхнего для увеличения или уменьшения длины состыкованных желобов, тележка перемещается по рельсам к футерованному корпусу и обратно с помощью электропривода, поворотную раму, в рабочем положении опертую на переднюю и заднюю опоры поворотной рамы, печь выполнена с возможностью работы на естественной и искусственной тяге с двухступенчатой установкой пылегазоочистки для достижения экологически чистого процесса. Обеспечивается увеличение срока службы печи, снижение потерь тепла и вредных выбросов в атмосферу. 6 з.п. ф-лы, 12 ил.

Изобретение относится к обжиговым печам непрерывного действия для термической обработки материала при контролируемой газовой атмосфере и температуре нагрева в режиме непрерывной работы и постоянном перемешивании материала, в частности к шнеко-трубчатой печи. Шнеко-трубчатая печь содержит теплоизоляционный корпус, электронагреватели, трубу-реторту, оснащенную загрузочной и разгрузочной течками, патрубком для подачи/забора воздуха и аптейком; шнек, расположенный внутри трубы-реторты и выполненный с возможностью вращения от электропривода; газоход, систему пылеулавливания и систему КИП, при этом труба-реторта выполнена диаметром в 1,4-2,5 раза больше диаметра шнека с формированием надшнекового пространства внутри трубы-реторты. Шнеко-трубчатая печь может быть выполнена двух-, трех- или четырехступенчатой. Обеспечивается возможность обработки как порошковых, так тонкодисперсных материалов с влажностью до 70% абс. и содержанием выгораемых и легколетучих компонентов от 5 до 95%, при этом пылевынос составляет ~0,5% от загрузки. 2 н. и 16 з.п. ф-лы, 4 ил.

Изобретение относится к вращающейся плавильной печи для переработки отходов цветных металлов, в частности алюминиевого лома. Печь содержит цилиндрический корпус, футеровку, имеющую теплоизоляционный слой, состоящий из трех слоев гибкого теплоизоляционного стекловолокнистого муллитокремнеземистого картона и слоя шамотного легковеса, на который набит слой футеровки из муллитовой безусадочной набивной массы с корочкой гарнисажа, два загрузочных отверстия, выполненных в передней и задней торцевых стенках печи, летку для слива расплава металла и летку для слива шлака, и горелочное устройство, отличающаяся тем, что горелочное устройство выполнено в виде двух газовых инжекционных цилиндрических горелок, закрепленных в крышках, закрывающих загрузочные отверстия, при этом каждая из упомянутых горелок имеет двенадцать смесителей, пять из которых снабжены насадками, размещены вверху по месту установки в крышках загрузочных отверстий печи с обеспечением пламени длиной 2,4 м, а семь смесителей без насадок выполнены с возможностью обеспечения при горении газовоздушной смеси пламени длиной 1,5 м, при этом печь имеет смонтированные на тележке два поворотных футерованных желоба с приваренными футерованными чашами и с возможностью перемещения их на тележке по рельсам к летке для слива расплава металла и обратно с помощью электропривода, а в каждой крышке, закрывающей загрузочное отверстие, выполнен газоход, причем печь выполнена с возможностью работы на естественной и искусственной тяге с двухступенчатой системой пылегазоочистки, обеспечивающей экологически чистый процесс и включающей камеру смешения, дымосос, двухсекционный агрегат газоочистки и блок циклонов. Обеспечиваются малые потери тепла, повышение производительности и увеличение срока эксплуатации печи. 4 з.п. ф-лы, 10 ил.

Изобретение относится к способу первичной обработки сырья, используемого в технологии производства фосфорной кислоты. Способ включает следующие этапы: (1) первичная обработка сырья, (2) заготовка внутренней сферы гранул, (3) формование композитных окатышей, (4) восстановление композитных окатышей по печному методу и (5) гидратация и поглощение фосфора. Технический результат заключается в обеспечении энергосберегающего, экологически безопасного и высокоэффективного процесса, позволяющего получить фосфорную кислоту высокого качества. 12 з.п. ф-лы, 20 ил.

Изобретение относится к вращающейся барабанной плавильной печи для переработки отходов цветных металлов, в частности алюминиевых ломов. Печь содержит цилиндрический корпус, горелочное устройство, загрузочное окно, летку для слива расплава металла, теплоизоляционный слой, состоящий из трех листов гибкого теплоизоляционного стекловолокнистого муллитокремнеземистого картона и слоя шамотного легковеса, на который набит слой футеровки из муллитовой безусадочной набивной массы, горелочное устройство выполнено в виде газовой четырехсмесительной инжекционной прямоугольной горелки, в которой в нижнем ряду размещены два смесителя с перфорированной полусферой, а в верхнем ряду находятся два смесителя с двенадцатью ребрами в конце смесителя на внутренней стороне. Печь имеет механизм поворота горелочного щита, с возможностью загрузки шихты в печь через окно для горелки при отведенной горелке, приводной механизм для вращения печи относительно горизонтальной оси в обе стороны на угол 105, систему пылегазоочистки, содержащую камеру смешения, дымосос, агрегат пылегазоочистки и картриджный фильтр. Обеспечивается простота конструкции, увеличивается срок эксплуатации, снижаются выбросы вредных газов в атмосферу. 3 з.п. ф-лы, 7 ил.

Печи для плавки меди и ее сплавов

Температура разливки меди , и чтобы перегрев металла не привел к существенному сокращению срока службы подового камня, удельная мощность в каналах не должна превышать .

Для латуни температура разливки составляет примерно , а удельная мощность в каналах не превышает . При большей удельной мощности возникает так называемая цинковая пульсация, состоящая в прерывании тока в каналах. Цинк, чья температура плавления меньше температуры плавления латуни, при плавке латуни вскипает в каналах. Его пары в виде пузырьков поднимаются к устьям каналов, где, соприкасаясь с более холодным металлом, конденсируются. Наличие пузырьков приводит к сужению сечения канала, а следовательно, к возрастанию плотности тока в нем и увеличению сил электродинамического обжатия металла в канале магнитным полем собственного тока. При удельной мощности, выше указанной, происходит интенсивное кипение цинка, рабочее сечение существенно сокращается, электродинамическое давление превосходит гидростатическое давление столба металла над каналом, вследствие чего металл оказывается пережатым, и ток прекращается. После разрыва тока электродинамические силы исчезают, пузырьки всплывают, после чего прохождение тока возобновляется, разрывы тока происходят 2 - 3 раза в секунду, нарушая нормальную работу печи.

При удельной мощности, меньше указанной, цинковая пульсация начинается при прогреве всей ванны до температуры порядка и служит сигналом о готовности латуни к разливке.

Для плавки меди и ее сплавов применяются шахтные, а при загрузке более 3 тонн – барабанные печи и миксеры. Коэффициент мощности при плавке меди составляет примерно 0,5 ; при плавке бронз и латуней – 0,7 ; при плавке медно-никелевых сплавов – 0,8 .

Печи для плавки алюминия и его сплавов

Особенности канальных печей для плавки алюминия и его сплавов (рис. 2.10, 2.11) связаны с легкой окисляемостью алюминия и другими свойствами металла и его окиси. Алюминий имеет температуру плавления , разливки около . Низкая плотность жидкого алюминия делает нежелательной интенсивную циркуляцию расплава, так как неметаллические включения, увлеченные на глубину ванны, всплывают очень медленно.

Расплавленный алюминий в печи покрывается пленкой твердой окиси, которая благодаря поверхностному натяжению алюминия удерживается на его поверхности, предохраняя металл от дальнейшего окисления. Однако, если сплошная пленка взломана, то осколки ее тонут и опускаются на дно ванны, попадая в каналы. Окись алюминия химически активна, и осколки пленки вследствие химического взаимодействия прикрепляются к стенкам каналов, уменьшая их сечение. В процессе работы каналы «зарастают» и их приходится периодически очищать.

Эти свойства алюминия и его окиси вынуждают работать с низкой удельной мощностью в каналах. При этом перегрев металла в каналах уменьшается, а температура на поверхности поддерживается на минимальном уровне, что ослабляет окисление, скорость которого растет с повышением температуры.

При малой удельной мощности уменьшается циркуляция металла, что способствует сохранности окисной пленки и уменьшению количества неметаллических включений.

Обеспечить сохранность окисной пленки невозможно, так как она разрушается при загрузке шихты. В период расплавления взламывание пленки происходит главным образом вследствие циркуляции металла. Поэтому в печах для плавки алюминия принимают меры для её ослабления, особенно в верхней части ванны: уменьшают удельную мощность в каналах, часто применяют горизонтальное расположение каналов, а при вертикальном их расположении увеличивают глубину ванны, переход из канала в ванну выполняют под прямым углом, что увеличивает гидравлическое сопротивление устья канала. Горизонтальное расположение каналов имеет и то преимущество, что затруднено попадание осколков пленки в каналы, но не исключает его полностью, так как осколки могут увлекаться в каналы циркуляцией металла.

Каналы печей для плавки алюминия состоят из прямолинейных участков, что позволяет облегчить их очистку.

Зарастание канала сказывается на электрическом режиме тогда, когда его размер становится приблизительно равным глубине проникновения тока в металл, которая для расплавленного алюминия при частоте 50 Гц равна 3,5 см. Поэтому, чтобы очистку каналов проводить реже, принимают радиальный размер канала 6 – 10 см. Для горизонтального участка, очищать который особенно затруднительно, принимают радиальный размер канала этого участка примерно (1,3 – 1,5) . Вертикальные участки очищают примерно один раз в смену, горизонтальные – один раз в сутки.

Наряду с применением печей других конструктивных типов применяют двухкамерные печи. Она может быть однофазной с двумя каналами, соединяющими ванны, или трехфазной с четырьмя каналами. В стенках ванн по осям каналов делают отверстия для чистки каналов, закрываемые глиняными пробками. Чистка производится после слива металла.

Коэффициент мощности из-за большого сечения каналов низок, он составляет 0,3 – 0,4 .

Печи для плавки цинка

В канальных печах переплавляется катодный цинк высокой чистоты, не требующий рафинирования. Расплавленный цинк, обладая высокой жидкотекучестью, вступает в соединение с футеровочными материалами. Поскольку процесс пропитывания футеровки цинком ускоряется с увеличением гидростатического давления металла, печи для плавки цинка имеют прямоугольную ванну небольшой глубины и индукционные единицы с горизонтальными каналами (рис. 2.12) ..

Ванна разделяется на плавильную и разливочную камеры внутренней перегородкой, в нижней части которой имеется окно. Чистый металл перетекает через окно в разливочную камеру, примеси и загрязнения, находящиеся у поверхности, остаются в плавильной камере. Печи оборудуются загрузочными и разливочными устройствами и работают в непрерывном режиме: катодный цинк загружается в плавильную камеру через проем в своде, а переплавленный металл разливается в изложницы. Разливка может осуществляться вычерпыванием металла ковшом, выпуском его через клапан или выкачиванием насосом. Загрузочное и разгрузочное устройства имеют конструкцию, предотвращающую попадание паров цинка в цех, и снабжаются мощной вытяжной вентиляцией.

Печи с применением съемных индукционных единиц выполняются качающимися, а с несъемными – стационарными. Наклон используется для замены индукционной единицы без слива металла.

Коэффициент мощности печей для цинка равен 0,5 – 0,6 .

Печи для плавки чугуна

Канальные печи используются для плавки чугуна в качестве миксеров в дуплекс-процессе с вагранками, дуговыми и индукционными тигельными печами, позволяя повысить температуру, осуществить легирование и обеспечить однородность чугуна перед разливкой. Коэффициент мощности печей для плавки чугуна – 0,6 – 0,8 .

Печи мощностью до 16 т – шахтные с одной или двумя съемными единицами, печи большей емкости – шахтные и барабанные, с числом съемных единиц от одной до четырех.

Существуют специальные канальные раздаточные миксеры для обслуживания литейных конвейеров. Выдача дозированной порции из такого миксера производится либо с помощью наклона печи, либо вытеснением металла путем подачи сжатого газа в герметизированную печь.

Канальные миксеры для чугуна имеют сифонные системы заливки и сливки металла; заливной и выпускной каналы выходят в ванну около ее дна, ниже зеркала расплава. Благодаря этому металл не загрязняется шлаком. Заливка и слив металла могут происходить одновременно.







2024 © fealta.ru.